1个数据集,16个Pandas函数
数据集是黄同学精心为大家编造,只为了帮助大家学习到知识。数据集如下:
import pandas as pd df ={'姓名':[' 黄同学','黄至尊','黄老邪 ','陈大美','孙尚香'], '英文名':['Huang tong_xue','huang zhi_zun','Huang Lao_xie','Chen Da_mei','sun shang_xiang'], '性别':['男','women','men','女','男'], '身份证':['463895200003128433','429475199912122345','420934199110102311','431085200005230122','420953199509082345'], '身高':['mid:175_good','low:165_bad','low:159_bad','high:180_verygood','low:172_bad'], '家庭住址':['湖北广水','河南信阳','广西桂林','湖北孝感','广东广州'], '电话号码':['13434813546','19748672895','16728613064','14561586431','19384683910'], '收入':['1.1万','8.5千','0.9万','6.5千','2.0万']} df = pd.DataFrame(df) df
结果如下:
观察上述数据,数据集是乱的。接下来,我们就用16个Pandas来对上述数据,进行数据清洗。
① cat函数:用于字符串的拼接
df["姓名"].str.cat(df["家庭住址"],sep='-'*3)
结果如下:
② contains:判断某个字符串是否包含给定字符
df["家庭住址"].str.contains("广")
结果如下:
③ startswith/endswith:判断某个字符串是否以…开头/结尾
# 第一个行的“ 黄伟”是以空格开头的 df["姓名"].str.startswith("黄") df["英文名"].str.endswith("e")
结果如下:
④ count:计算给定字符在字符串中出现的次数
df["电话号码"].str.count("3")
结果如下:
⑤ get:获取指定位置的字符串
df["姓名"].str.get(-1) df["身高"].str.split(":") df["身高"].str.split(":").str.get(0)
结果如下:
⑥ len:计算字符串长度
df["性别"].str.len()
结果如下:
⑦ upper/lower:英文大小写转换
df["英文名"].str.upper() df["英文名"].str.lower()
结果如下:
⑧ pad+side参数/center:在字符串的左边、右边或左右两边添加给定字符
df["家庭住址"].str.pad(10,fillchar="*") # 相当于ljust() df["家庭住址"].str.pad(10,side="right",fillchar="*") # 相当于rjust() df["家庭住址"].str.center(10,fillchar="*")
结果如下:
⑨ repeat:重复字符串几次
df["性别"].str.repeat(3)
结果如下: