我们常说的算法时间复杂度和空间复杂度到底是什么?

简介: 针对某一类问题的解决,我们可能需要借助算法来实现,实现的手段也可能是各式各样的。虽然最终都解决了问题,但是各个解决手段,也就是算法还是存在优劣之分的。

4.png


前言


针对某一类问题的解决,我们可能需要借助算法来实现,实现的手段也可能是各式各样的。虽然最终都解决了问题,但是各个解决手段,也就是算法还是存在优劣之分的。


既然存在比较,那肯定就有一个标准供来参考,那么我们在评价一个算法的优劣时参考的标准是什么呢?


算法的优劣主要从它执行时所占用的「时间」和「空间」两个方面来进行评定,也就是我们常听到的「时间复杂度」和「空间复杂度」。


  • 时间复杂度:执行算法所需要的计算工作量,可以估算出程序对处理器的使用程度。
  • 空间复杂度:执行当前算法所需要的内存空间,可以估算出程序对处理器的使用程度。


时间复杂度


谈到是时间复杂度,我们很多人的第一反应就是将算法执行一遍,打印出其执行的时间就是它所消耗的时间,其实这样是不可行的,因为:


  • 解决一个问题的算法可能有很多种,一一实现的工作量无疑是巨大的,得不偿失;
  • 不同计算机的软、硬件环境不同,即便使用同一台计算机,不同时间段其系统环境也不相同,程序的运行时间很可能会受影响,严重时甚至会导致误判。


实际场景中,我们更喜欢用一个估值来表示算法所编程序的运行时间。所谓估值,即估计的、并不准确的值。注意,虽然估值无法准确的表示算法所编程序的运行时间,但它的得来并非凭空揣测,需要经过缜密的计算后才能得出。


表示一个算法所编程序运行时间的多少,用的并不是准确值(事实上也无法得出),而是根据合理方法得到的预估值。


我们一般用“大 O 符号表示法”来表示时间复杂度:T(n) = O(f(n))


  • n 是影响复杂度变化的因子
  • f(n) 是复杂度具体的算法
  • O 表示正比例关系


这个公式的全称是:算法的渐进时间复杂度


大 O 符号表示法并不是用于来真实代表算法的执行时间的,它是用来表示代码执行时间的增长变化趋势的。


我们来看一个常见的例子:


for(let index = 0; index < n; index++){
    console.log(index);
}


可以看到,这段程序中仅有 2 行代码,其中:


  • for 循环从 index 的值为 0 一直逐增至 n(注意,循环退出的时候 index 值为 n),因此 for 循环语句执行了 n+1 次;
  • 而循环内部仅有一条语句,index 的值每增 1 该语句就执行一次,一直到 index 的值为 n-1,因此,打印语句一共执行了 n 次。


因此,整段代码中所有语句共执行了 (n+1)+n 次,即 2n+1 次。数据结构中,每条语句的执行次数,又被称为该语句的频度。整段代码的总执行次数,即整段代码的频度。


常见的时间复杂度量级


  • 常数阶O(1)
  • 对数阶O(logN)
  • 线性阶O(n)
  • 平方阶O(n^2)
  • 立方阶O(n^3)
  • K次方阶O(n^k)
  • 指数阶(2^n)


这里仅介绍了以最坏情况下的频度作为时间复杂度,而在某些实际场景中,还可以用最好情况下的频度和最坏情况下的频度的平均值来作为算法的时间复杂度。


空间复杂度


和时间复杂度类似,一个算法的空间复杂度,也常用大 O 记法表示。空间复杂度比较常用的有:


  • O(1)
  • O(n)
  • O(n²)

要知道每一个算法所编写的程序,运行过程中都需要占用大小不等的存储空间,例如:


  • 程序代码本身所占用的存储空间;
  • 程序中如果需要输入输出数据,也会占用一定的存储空间;
  • 程序在运行过程中,可能还需要临时申请更多的存储空间。


首先,程序自身所占用的存储空间取决于其包含的代码量,如果要压缩这部分存储空间,就要求我们在实现功能的同时,尽可能编写足够短的代码。


程序运行过程中输入输出的数据,往往由要解决的问题而定,即便所用算法不同,程序输入输出所占用的存储空间也是相近的。


事实上,对算法的空间复杂度影响最大的,往往是程序运行过程中所申请的临时存储空间。不同的算法所编写出的程序,其运行时申请的临时存储空间通常会有较大不同。


如果程序所占用的存储空间和输入值无关,则该程序的空间复杂度就为 O(1);反之,如果有关,则需要进一步判断它们之间的关系:


  • 如果随着输入值 n 的增大,程序申请的临时空间成线性增长,则程序的空间复杂度用 O(n) 表示;
  • 如果随着输入值 n 的增大,程序申请的临时空间成 n2 关系增长,则程序的空间复杂度用 O(n2) 表示;
  • 如果随着输入值 n 的增大,程序申请的临时空间成 n3 关系增长,则程序的空间复杂度用 O(n3) 表示;


比如:


let m = 0;
for(let index = 0; index < 9999; index++){
    m++;
}


虽然 m 的值随着 index 的增加在一直变化,可是并未产生新的变量,即程序所占用的空间并未发生变化,所以,它的空间复杂度为 O(1)。


总结


  1. 时间复杂度和空间复杂度都是一种经过严谨推算得出的预估值,并不能代表实际情况。
  2. 时间复杂度和空间复杂度代表的是一种趋势。
  3. 我们一般情况下所说的时间复杂度和空间复杂度,都是最坏情况下的执行趋势,实际情况可能比预估的要好。
  4. 多数业务场景下,一个好的算法往往更注重的是时间复杂度的比较,而空间复杂度只要在一个合理的范围内就可以。


~ 本文完,感谢阅读!


学习有趣的知识,结识有趣的朋友,塑造有趣的灵魂!


你来,怀揣期望,我有墨香相迎! 你归,无论得失,唯以余韵相赠!


知识与技能并重,内力和外功兼修,理论和实践两手都要抓、两手都要硬!


3.png




相关文章
|
5天前
|
机器学习/深度学习 存储 算法
算法时间复杂度分析
这篇文章讲解了如何分析算法的时间复杂度,包括关注循环执行次数最多的代码段、总复杂度的确定、嵌套代码复杂度的计算方法,并提供了大O阶的推导步骤和常见时间复杂度的列表,同时还介绍了空间复杂度的概念及其重要性。
|
14天前
|
搜索推荐
九大排序算法时间复杂度、空间复杂度、稳定性
九大排序算法的时间复杂度、空间复杂度和稳定性,提供了对各种排序方法效率和特性的比较分析。
28 1
|
28天前
|
存储 算法 搜索推荐
深度剖析 Python 算法:时间复杂度与空间复杂度的爱恨情仇,你站哪边?
【7月更文挑战第23天】在Python算法设计中,时间复杂度与空间复杂度如影随形,反映算法效率与资源消耗。时间复杂度揭示算法随输入规模增长的计算趋势,空间复杂度关注额外存储需求。找最大值示例中,两种实现均具O(n)时间与O(1)空间复杂度,但在排序等复杂场景下,如冒泡排序与快速排序,或哈希表与二叉树查找,权衡变得关键。实时系统偏好低时间复杂度算法,存储受限环境则需关注空间效率。最佳选择依应用场景而定,掌握二者平衡,方能编写高效代码。
24 10
|
28天前
|
存储 缓存 算法
时间&空间复杂度,Python 算法的双重考验!如何优雅地平衡两者,打造极致性能?
【7月更文挑战第23天】在Python算法设计中,时间与空间复杂度是关键考量,需精妙平衡以优化程序性能。时间复杂度反映算法随输入规模增长的执行时间趋势,空间复杂度关注额外存储需求。线性搜索O(n)时间,O(1)空间;二分搜索O(log n)时间,O(1)空间,提升效率;动态规划如斐波那契数列O(n)时间与空间,利用存储减小计算。实际应用需按场景需求调整,如实时数据偏重时间,资源受限环境优先考虑空间。平衡两者,理解算法本质,结合实践,创造高性能程序。
35 7
|
28天前
|
算法 Python
震惊!Python 算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
【7月更文挑战第23天】在Python算法设计中,时间与空间复杂度是幕后操控程序效率的双雄。时间复杂度反映算法执行时间随输入规模增长的速度,空间复杂度则计量算法运行时额外内存的使用。如顺序查找的时间复杂度O(n)与固定空间O(1),对比冒泡排序的O(n^2)时间和快速排序的O(n log n)时间优势,后者虽递归消耗空间,但在多数情况下提供更佳性能。根据需求,可权衡选择,如利用哈希表在充足内存下实现O(1)查找,或在空间受限时,偏好空间效率更高的算法,实现Python代码的高性能与优雅。
36 6
|
27天前
|
存储 算法 搜索推荐
揭秘!Python算法设计的隐形杀手:忽视时间复杂度与空间复杂度的后果有多严重?
【7月更文挑战第24天】在 Python 编程中, 算法设计是性能与效率的基石。忽视时间复杂度 (如使用 O(2^n) 的斐波那契数列递归算法而非 O(n) 的动态规划版本) 和空间复杂度 (如在插入排序中每次迭代都复制整个已排序数组, 导致 O(n^2) 的空间复杂度) 可能严重拖累程序。性能优化至关重要, 合理的算法设计保证程序高效稳定, 是攀登技术高峰的坚实阶梯。
36 3
|
27天前
|
算法 搜索推荐 数据处理
震惊!Python算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
【7月更文挑战第24天】在编程世界里, Python以简洁强大备受欢迎, 但算法设计与复杂度分析对程序性能至关重要。算法是程序的灵魂, 其效率直接影响数据处理能力。时间复杂度衡量算法执行速度, 如冒泡排序O(n²)与快速排序O(n log n)的显著差异; 空间复杂度关注内存占用, 递归算法需警惕栈溢出风险。优秀算法需平衡时间和空间效率, 深入理解问题本质, 迭代优化实现高效可靠。
25 2
|
27天前
|
算法 Python
算法小白秒变高手?一文读懂Python时间复杂度与空间复杂度,效率翻倍不是梦!
【7月更文挑战第24天】在编程中,算法效率由时间复杂度(执行速度)与空间复杂度(内存消耗)决定。时间复杂度如O(n), O(n^2), O(log n),反映算法随输入增长的耗时变化;空间复杂度则衡量算法所需额外内存。案例对比线性搜索(O(n))与二分搜索(O(log n)),后者利用有序列表显著提高效率。斐波那契数列计算示例中,递归(O(n))虽简洁,但迭代(O(1))更节省空间。掌握这些,让代码性能飞跃,从小白到高手不再是梦想。
21 1
|
6天前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
1天前
|
算法 数据安全/隐私保护
基于LS算法的OFDM+QPSK系统信道估计均衡matlab性能仿真
基于MATLAB 2022a的仿真展示了OFDM+QPSK系统中最小二乘(LS)算法的信道估计与均衡效果。OFDM利用多个低速率子载波提高频谱效率,通过循环前缀克服多径衰落。LS算法依据导频符号估计信道参数,进而设计均衡器以恢复数据符号。核心程序实现了OFDM信号处理流程,包括加性高斯白噪声的加入、保护间隔去除、快速傅立叶变换及信道估计与均衡等步骤,并最终计算误码率,验证了算法的有效性。
9 2

热门文章

最新文章