《前端算法系列》如何让前端代码速度提高60倍

简介: 今天的问题从排序算法入手,来讲解如何根据业务需求,结合金典的算法,来实现js高性能开发。


今天的问题从排序算法入手,来讲解如何根据业务需求,结合金典的算法,来实现js高性能开发。


情景


老板让小明给公司的20000+条数据排个序,但是由于排序的操作会频繁发生,如果操作执行的时间很慢,则会严重降低用户体验,听到这条噩耗后小明开始了代码。

1.毫无违和感的排序算法 小明根据需求,思考了一会,写下了如下算法:


/**
 * max排序
 * @param {*} arr 
 * 耗时:760ms
 */
 function maxSort(arr) {
     let result = [...arr];
     for(let i=0,len=result.length; i< len; i++) {
        let minV = Math.min(...result.slice(i))
        let pos = result.indexOf(minV,i)
        result.splice(pos, 1)
        result.unshift(minV)
     }
     return result.reverse()
 }

自信的小明陶醉在自己的算法中,准备测试一下性能,

/*
 * @Author: Mr Jiang.Xu 
 * @Date: 2019-06-11 10:25:23 
 * @Last Modified by: Mr Jiang.Xu
 * @Last Modified time: 2019-06-13 21:03:59
 * @desc 测试函数执行的时间
 */
const testArr = require('./testArr');
module.exports = async function getFnRunTime(fn) {
    let len = testArr.length;
    let startTime = Date.now(), endTime;
    let result = await fn(testArr);
    endTime = Date.now();
    console.log(result);
    console.log(`total time:${endTime-startTime}ms`,
                'test array\'length:' + len, 
                result.length
    );
}

运行该测试函数后,耗时760ms,小明觉得还不错,放到项目中后,第一次操作还好,连续操作了几次后,页面明显卡顿。。。(求此时小明心里的阴影面积)


2.冒泡排序


小明不甘心,在网上查找相关资料后,写下了如下冒泡排序代码:

/**
  * 置换函数
  * @param {源数组} arr 
  * @param {原数组的A项} indexA 
  * @param {原数组的B项} indexB 
  */
 function swap(arr, indexA, indexB) {
    [arr[indexA], arr[indexB]] = [arr[indexB], arr[indexA]];
 }
/**
 * 原始冒泡排序
 * @param {数组} arr 
 * 耗时:377ms
 */
 function bubbleSort1(arr) {
    for (let i = arr.length - 1; i > 0; i--) {
      for (let j = 0; j < i; j++) {
        if (arr[j] > arr[j + 1]) {
          swap(arr, j, j + 1);
        }
      }
    }
    return arr;
  }

测试后耗时377ms,完美,小明放到项目中测试,频繁排序还是会有点卡顿,能不能再优化一下呢? 思考许久之后,小明完善了冒泡排序:

/**
 * 利用索引优化后的冒泡排序
 * @param {数组} arr 
 * 耗时:350ms
 */ 
function bubbleSort2(arr) {
    let i = arr.length - 1;
    while (i > 0) {
        let pos = 0;
        for (let j = 0; j < i; j++) {
        if (arr[j] > arr[j + 1]) {
            pos = j;
            swap(arr, j, j + 1);
        }
        }
        i = pos;
    }
    return arr;
}

根据缓存索引位置来提高排序性能,时间节约了20ms,但收益很小。小明开始和自己过不去了,在维基百科上继续查找,最后发现了一个方法:

/**
 * 在每趟排序中进行正向和反向两遍冒泡 ,
 * 一次可以得到两个最终值(最大和最小), 
 * 从而使外排序趟数大概减少了一半
 * @param {*} arr 
 * 耗时:312ms
 */
function bubbleSort3(arr) {
    let start = 0;
    let end = arr.length - 1;
    while (start < end) {
      let endPos = 0;
      let startPos = 0;
      for (let i = start; i < end; i++) {
        if (arr[i] > arr[i + 1]) {
            endPos = i;
            swap(arr, i, i + 1);
        }
      }
      end = endPos;
      for (let i = end; i > start; i--) {
        if (arr[i - 1] > arr[i]) {
          startPos = i;  
          swap(arr, i - 1, i);
        }
      }
      start = startPos;
    }
    return arr;
  }

通过在每趟排序中进行正向和反向两遍冒泡,小明把时间又降低了38ms,不错~



再次推荐大家有事多上上维基百科,总有一款适合你。 ####3.插入排序 在收入小规模胜利后,小明膨胀了,狂言要把排序时间降低到100ms一下,于是后又安利了如下算法:


/**
   * 插入排序 -- 基础版
   * @param {*} arr 
   * 耗时:897ms
   */
  function insertionSort(arr) {
    for (let i = 1, len = arr.length; i < len; i++) {
      const temp = arr[i];
      let preIndex = i - 1;
      while (arr[preIndex] > temp) {
        arr[preIndex + 1] = arr[preIndex];
        preIndex -= 1;
      }
      arr[preIndex + 1] = temp;
    }
    return arr;
  }

897ms,小明留下了没技术的泪水。



最后小明拿出了这个看家本领,查到了二分搜索,最后改造后代码入下:


/**
   * 改造二分查找,查找小于value且离value最近的值的索引
   * @param {*} arr 
   * @param {*} maxIndex 
   * @param {*} value 
   */
  function binarySearch1(arr, maxIndex, value) {
    let min = 0;
    let max = maxIndex;
    while (min <= max) {
      const m = Math.floor((min + max) / 2);
      if (arr[m] <= value) {
        min = m + 1;
      } else {
        max = m - 1;
      }
    }
    return min;
  }
/**
 * 使用二分法来优化插入排序
 * @param {*} arr 
 * 耗时:86ms
 */
function insertionSort1(arr) {
    for (let i = 1, len = arr.length; i < len; i++) {
        const temp = arr[i];
        const insertIndex = binarySearch1(arr, i - 1, arr[i]);
        for (let preIndex = i - 1; preIndex >= insertIndex; preIndex--) {
        arr[preIndex + 1] = arr[preIndex];
        }
        arr[insertIndex] = temp;
    }
    return arr;
}

完美,只用了86ms!小明激动的站了起来,还拍了下桌子,全然无视观众的眼光。



小明已经满足的不要不要的了,对86ms相当满意,老板也对他刮目想看。


4.希尔排序


难道就没有提升的余地了么?进过调查研究表明,是有更优的方案的:


/**
 * 希尔排序
 * 核心:通过动态定义的 gap 来排序,先排序距离较远的元素,再逐渐递进
 * @param {*} arr 
 * 耗时:15ms
 */
function shellSort(arr) {
    const len = arr.length;
    let gap = Math.floor(len / 2);
    while (gap > 0) {
      // gap距离
      for (let i = gap; i < len; i++) {
        const temp = arr[i];
        let preIndex = i - gap;
        while (arr[preIndex] > temp) {
          arr[preIndex + gap] = arr[preIndex];
          preIndex -= gap;
        }
        arr[preIndex + gap] = temp;
      }
      gap = Math.floor(gap / 2);
    }
    return arr;
  }

耗时15ms,膜拜。 ####5.归并排序

/**
 * 归并排序
 * @param {*} arr 
 * 耗时 30ms
 */
function concatSort(arr) {
  const len = arr.length;
  if (len < 2) { return arr; }
  const mid = Math.floor(len / 2);
  const left = arr.slice(0, mid);
  const right = arr.slice(mid);
  return concat(concatSort(left), concatSort(right));
}
function concat(left, right) {
  const result = [];
  while (left.length > 0 && right.length > 0) {
    result.push(left[0] <= right[0] ? left.shift() : right.shift());
  }
  return result.concat(left, right);
}

耗时30ms,也想当优秀。还有没有更快的方法呢?答案是有的,但是会涉及到比较高僧的数学知识,放弃吧,孩子。。。



接下来会推出更多优秀的算法,敬请期待哦~ 最后,欢迎加入前端技术群,一起探讨前端的魅力




###更多推荐






目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
212 65
|
5天前
|
算法 前端开发 机器人
一文了解分而治之和动态规则算法在前端中的应用
该文章详细介绍了分而治之策略和动态规划算法在前端开发中的应用,并通过具体的例子和LeetCode题目解析来说明这两种算法的特点及使用场景。
一文了解分而治之和动态规则算法在前端中的应用
|
24天前
|
机器学习/深度学习 存储 算法
经典算法代码
这段代码展示了多个经典算法,包括:穷举法解决“百钱买百鸡”问题;递推法计算“猴子吃桃”问题;迭代法求解斐波那契数列及折纸高度超越珠峰的问题。同时,还提供了希尔排序算法实现及披萨票务订购系统和汉诺塔问题的链表存储解决方案。每部分通过具体案例解释了算法的应用场景与实现方法。
22 3
|
5天前
|
算法 前端开发
一文了解贪心算法和回溯算法在前端中的应用
该文章深入讲解了贪心算法与回溯算法的原理及其在前端开发中的具体应用,并通过分析LeetCode题目来展示这两种算法的解题思路与实现方法。
|
2月前
|
缓存 前端开发 数据格式
构建前端防腐策略问题之保证组件层的代码不受到接口版本变化的问题如何解决
构建前端防腐策略问题之保证组件层的代码不受到接口版本变化的问题如何解决
|
2月前
|
JavaScript 前端开发 小程序
【技巧】JS代码这么写,前端小姐姐都会爱上你
本文介绍了JavaScript编程中的实用技巧,包括解构赋值的多种妙用、数组操作技巧及常用JS功能片段。解构赋值部分涵盖短路语法防错、深度解构及默认值赋值;数组技巧包括按条件添加数据、获取最后一个元素及使用`includes`优化`if`语句;常用功能片段则涉及URL参数解析、页面滚动回顶部及获取滚动距离等。通过这些技巧,提升代码质量和效率。
22 0
【技巧】JS代码这么写,前端小姐姐都会爱上你
|
2月前
|
前端开发 API 开发者
构建前端防腐策略问题之防腐层的核心代码实现以RxJS Observable为中心的的问题如何解决
构建前端防腐策略问题之防腐层的核心代码实现以RxJS Observable为中心的的问题如何解决
|
2月前
|
前端开发 JavaScript
Web 前端大揭秘!JS 数据类型检测竟如此震撼,一场惊心动魄的代码探秘之旅等你来!
【8月更文挑战第23天】在Web前端开发中,合理检测数据类型至关重要。JavaScript作为动态类型语言,变量类型可在运行时变化,因此掌握检测技巧十分必要。
26 1
|
2月前
|
JavaScript 算法 前端开发
"揭秘Vue.js的高效渲染秘诀:深度解析Diff算法如何让前端开发快人一步"
【8月更文挑战第20天】Vue.js是一款备受欢迎的前端框架,以其声明式的响应式数据绑定和组件化开发著称。在Vue中,Diff算法是核心之一,它高效计算虚拟DOM更新时所需的最小实际DOM变更,确保界面快速准确更新。算法通过比较新旧虚拟DOM树的同层级节点,递归检查子节点,并利用`key`属性优化列表更新。虽然存在局限性,如难以处理跨层级节点移动,但Diff算法仍是Vue高效更新机制的关键,帮助开发者构建高性能Web应用。
49 1
|
2月前
|
前端开发 IDE Java
"揭秘前端转Java的秘径:SpringBoot Web极速入门,掌握分层解耦艺术,让你的后端代码飞起来,你敢来挑战吗?"
【8月更文挑战第19天】面向前端开发者介绍Spring Boot后端开发,通过简化Spring应用搭建,快速实现Web应用。本文以创建“Hello World”应用为例,展示项目基本结构与运行方式。进而深入探讨三层架构(Controller、Service、DAO)下的分层解耦概念,通过员工信息管理示例,演示各层如何协作及依赖注入的使用,以此提升代码灵活性与可维护性。
38 2