Seaborn从零开始学习教程(一)

简介: 最近在做几个项目的数据分析,每次用到seaborn进行可视化绘图的时候总是忘记具体操作。虽然seaborn的官方网站已经详细的介绍了使用方法,但是毕竟是英文,而且每次都上网查找不是很方便,还不如自己重新来一遍。因此博主想从零开始将seaborn学习一遍,做一个总结,也希望供大家使用参考。

Seaborn简介

seabornmatplotlib一样,也是Python进行数据可视化分析的重要第三方包。但 seaborn 是在 matplotlib 的基础上进行了更高级的API封装,使得作图更加容易,图形更加漂亮。


博主并不认为seaborn可以替代matplotlib。虽然 seaborn 可以满足大部分情况下的数据分析需求,但是针对一些特殊情况,还是需要用到 matplotlib 的。换句话说,matplotlib 更加灵活,可定制化,而 seaborn 像是更高级的封装,使用方便快捷。

应该把seaborn视为matplotlib的补充,而不是替代物。

Seaborn学习内容


seaborn的学习内容主要包含以下几个部分:

风格管理

  • 绘图风格设置
  • 颜色风格设置

绘图方法

  • 数据集的分布可视化
  • 分类数据可视化
  • 线性关系可视化

结构网格

  • 数据识别网格绘图


本次将主要介绍风格管理的使用。

风格管理 - 绘图风格设置

除了各种绘图方式外,图形的美观程度可能是我们最关心的了。将它放到第一部分,因为风格设置是一些通用性的操作,对于各种绘图方法都适用。

让我们先看一个例子。

%matplotlib inline
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
np.random.seed(sum(map(ord, "aesthetics")))

我们定义了一个简单的方程来绘制一些偏置的正弦波,用来帮助我们查看不同的图画风格是什么样子的。

def sinplot(flip=1):
    x = np.linspace(0, 14, 100)
    for i in range(1, 7):
        plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip)

matplotlib默认参数下绘制结果是这样的:

sinplot()

微信图片_20220217210842.png

转换为seaborn默认绘图,可以简单的用set()方法。

sns.set()
sinplot()

微信图片_20220217210927.png

Seabornmatplotlib 的参数划分为两个独立的组合。第一组是设置绘图的外观风格的,第二组主要将绘图的各种元素按比例缩放的,以至可以嵌入到不同的背景环境中。


操控这些参数的接口主要有两对方法:

  • 控制风格:axes_style(), set_style()
  • 缩放绘图:plotting_context(), set_context()

每对方法中的第一个方法(axes_style(), plotting_context())会返回一组字典参数,而第二个方法(set_style(), set_context())会设置matplotlib的默认参数。


Seaborn的五种绘图风格

有五种seaborn的风格,它们分别是:darkgrid, whitegrid, dark, white, ticks。它们各自适合不同的应用和个人喜好。默认的主题是darkgrid

sns.set_style("whitegrid")
data = np.random.normal(size=(20, 6)) + np.arange(6) / 2
sns.boxplot(data=data);

微信图片_20220217211016.png

sns.set_style("dark")

sinplot()

微信图片_20220217205627.jpg

sns.set_style("white")

sinplot()

微信图片_20220217205627.jpg

sns.set_style("ticks")

sinplot()

微信图片_20220217205801.jpg

移除轴脊柱


whiteticks两个风格都能够移除顶部和右侧的不必要的轴脊柱。通过matplotlib参数是做不到这一点的,但是你可以使用seaborndespine()方法来移除它们:

sinplot()
sns.despine()

微信图片_20220217205859.jpg

一些绘图也可以针对数据将轴脊柱进行偏置,当然也是通过调用despine()方法来完成。而当刻度没有完全覆盖整个轴的范围时,trim参数可以用来限制已有脊柱的范围。


f, ax = plt.subplots()
sns.violinplot(data=data)
sns.despine(offset=10, trim=True);

微信图片_20220217211051.png

你也可以通过despine()控制哪个脊柱将被移除。

sns.set_style("whitegrid")
sns.boxplot(data=data, palette="deep")
sns.despine(left=True)

微信图片_20220217210013.jpg

临时设置绘图风格

虽然来回切换风格很容易,但是你也可以在一个with语句中使用axes_style()方法来临时的设置绘图参数。这也允许你用不同风格的轴来绘图:

with sns.axes_style("darkgrid"):
    plt.subplot(211)
    sinplot()
plt.subplot(212)
sinplot(-1)

微信图片_20220217211130.png

覆盖seaborn风格元素


如果你想定制化seaborn风格,你可以将一个字典参数传递给axes_style()set_style()的参数rc。而且你只能通过这个方法来覆盖风格定义中的部分参数。

如果你想要看看这些参数都是些什么,可以调用这个方法,且无参数,这将会返回下面的设置:

sns.axes_style()
{'axes.axisbelow': True,
 'axes.edgecolor': '.8',
 'axes.facecolor': 'white',
 'axes.grid': True,
 'axes.labelcolor': '.15',
 'axes.linewidth': 1.0,
 'figure.facecolor': 'white',
 'font.family': [u'sans-serif'],
 'font.sans-serif': [u'Arial',
  u'DejaVu Sans',
  u'Liberation Sans',
  u'Bitstream Vera Sans',
  u'sans-serif'],
 'grid.color': '.8',
 'grid.linestyle': u'-',
 'image.cmap': u'rocket',
 'legend.frameon': False,
 'legend.numpoints': 1,
 'legend.scatterpoints': 1,
 'lines.solid_capstyle': u'round',
 'text.color': '.15',
 'xtick.color': '.15',
 'xtick.direction': u'out',
 'xtick.major.size': 0.0,
 'xtick.minor.size': 0.0,
 'ytick.color': '.15',
 'ytick.direction': u'out',
 'ytick.major.size': 0.0,
 'ytick.minor.size': 0.0}

然后,你可以设置这些参数的不同版本了。

sns.set_style("darkgrid", {"axes.facecolor": ".9"})
sinplot()

微信图片_20220217211215.png

绘图元素比例缩放


有一套的参数可以控制绘图元素的比例。
首先,让我们通过
set()重置默认的参数:

sns.set()

有四个预置的环境,按大小从小到大排列分别为:paper, notebook, talk, poster。其中,notebook是默认的。

sns.set_context("paper")
sinplot()

微信图片_20220217210142.jpg

sns.set_context("talk")

sinplot()

微信图片_20220217210219.jpg

sns.set_context("poster")

sinplot()

微信图片_20220217211248.png

你可以通过使用这些名字中的一个调用set_context()来设置参数,并且你可以通过提供一个字典参数值来覆盖参数。当改变环境时,你也可以独立的去缩放字体元素的大小。


sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 2.5})
sinplot()

微信图片_20220217210334.jpg

同样的,你可以通过嵌入with语句临时的控制绘图的比例。



总结


  • 介绍了Seaborn的5中绘图风格
  • 移除轴脊柱
  • 临时设置绘图风格
  • 覆盖Seaborn风格元素
  • 绘图元素比例缩放

下一节将会介绍颜色风格的使用。


相关文章
|
11天前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
21 1
|
12天前
|
Python
SciPy 教程 之 Scipy 显著性检验 6
显著性检验是统计学中用于判断样本与总体假设间是否存在显著差异的方法。SciPy的scipy.stats模块提供了执行显著性检验的工具,如T检验,用于比较两组数据的均值是否来自同一分布。通过ttest_ind()函数,可以获取两样本的t统计量和p值,进而判断差异是否显著。示例代码展示了如何使用该函数进行T检验并输出结果。
14 1
|
13天前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
23 1
|
16天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 2
SciPy插值教程:介绍插值概念及其在数值分析中的应用,特别是在处理数据缺失时的插补和平滑数据集。SciPy的`scipy.interpolate`模块提供了强大的插值功能,如一维插值和样条插值。通过`UnivariateSpline()`函数,可以轻松实现单变量插值,示例代码展示了如何对非线性点进行插值计算。
20 3
|
16天前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
18天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 4
本教程介绍了SciPy的空间数据处理功能,主要通过scipy.spatial模块实现。内容涵盖空间数据的基本概念、距离矩阵的定义及其在生物信息学中的应用,以及如何计算欧几里得距离。示例代码展示了如何使用SciPy计算两点间的欧几里得距离。
31 5
|
18天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 空间数据 6
本教程介绍了SciPy处理空间数据的方法,包括使用scipy.spatial模块进行点位置判断、最近点计算等内容。还详细讲解了距离矩阵的概念及其应用,如在生物信息学中表示蛋白质结构等。最后,通过实例演示了如何计算两点间的余弦距离。
26 3
|
17天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 7
本教程介绍了SciPy的空间数据处理功能,涵盖如何使用`scipy.spatial`模块进行点的位置判断、最近点计算等操作。还详细解释了距离矩阵的概念及其在生物信息学中的应用,以及汉明距离的定义和计算方法。示例代码展示了如何计算两个点之间的汉明距离。
25 1
|
13天前
|
Python
SciPy 教程 之 Scipy 显著性检验 5
显著性检验用于判断样本与总体假设间的差异是否由随机变异引起,或是假设与真实情况不符所致。SciPy通过scipy.stats模块提供显著性检验功能,P值用于衡量数据接近极端程度,与alpha值对比以决定统计显著性。
19 0
|
14天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 插值 3
本教程介绍了SciPy中的插值方法,包括什么是插值及其在数据处理和机器学习中的应用。通过 `scipy.interpolate` 模块,特别是 `Rbf()` 函数,展示了如何实现径向基函数插值,以平滑数据集中的离散点。示例代码演示了如何使用 `Rbf()` 函数进行插值计算。
23 0