SciPy 教程 之 SciPy 空间数据 4

简介: 本教程介绍了SciPy的空间数据处理功能,主要通过scipy.spatial模块实现。内容涵盖空间数据的基本概念、距离矩阵的定义及其在生物信息学中的应用,以及如何计算欧几里得距离。示例代码展示了如何使用SciPy计算两点间的欧几里得距离。

SciPy 教程 之 SciPy 空间数据 4

SciPy 空间数据

空间数据又称几何数据,它用来表示物体的位置、形态、大小分布等各方面的信息,比如坐标上的点。

SciPy 通过 scipy.spatial 模块处理空间数据,比如判断一个点是否在边界内、计算给定点周围距离最近点以及给定距离内的所有点。

距离矩阵

在数学中, 一个距离矩阵是一个各项元素为点之间距离的矩阵(二维数组)。因此给定 N 个欧几里得空间中的点,其距离矩阵就是一个非负实数作为元素的 N×N 的对称矩阵距离矩阵和邻接矩阵概念相似,其区别在于后者仅包含元素(点)之间是否有连边,并没有包含元素(点)之间的连通的距离的讯息。因此,距离矩阵可以看成是邻接矩阵的加权形式。

在生物信息学中,距离矩阵用来表示与坐标系无关的蛋白质结构,还有序列空间中两个序列之间的距离。这些表示被用在结构比对,序列比对,还有在核磁共振,X射线和结晶学中确定蛋白质结构。

欧几里得距离

在数学中,欧几里得距离或欧几里得度量是欧几里得空间中两点间"普通"(即直线)距离。使用这个距离,欧氏空间成为度量空间。相关联的范数称为欧几里得范数。较早的文献称之为毕达哥拉斯度量。

欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。

以下实例查看给定点之间的欧几里德距离:

实例

from scipy.spatial.distance import euclidean

p1 = (1, 0)
p2 = (10, 2)

res = euclidean(p1, p2)

print(res)

输出结果如下图所示:

9.21954445729

目录
相关文章
|
18天前
|
人工智能 搜索推荐 数据可视化
用 Python 制作简单小游戏教程:手把手教你开发猜数字游戏
本教程详细讲解了用Python实现经典猜数字游戏的完整流程,涵盖从基础规则到高级功能的全方位开发。内容包括游戏逻辑设计、输入验证与错误处理、猜测次数统计、难度选择、彩色输出等核心功能,并提供完整代码示例。同时,介绍了开发环境搭建及调试方法,帮助初学者快速上手。最后还提出了图形界面、网络对战、成就系统等扩展方向,鼓励读者自主创新,打造个性化游戏版本。适合Python入门者实践与进阶学习。
99 1
|
2月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
174 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
3月前
|
Python
Python教程:os 与 sys 模块详细用法
os 模块用于与操作系统交互,主要涉及夹操作、路径操作和其他操作。例如,`os.rename()` 重命名文件,`os.mkdir()` 创建文件夹,`os.path.abspath()` 获取文件绝对路径等。sys 模块则用于与 Python 解释器交互,常用功能如 `sys.path` 查看模块搜索路径,`sys.platform` 检测操作系统等。这些模块提供了丰富的工具,便于开发中处理系统和文件相关任务。
118 14
|
3月前
|
数据采集 存储 监控
Python 原生爬虫教程:网络爬虫的基本概念和认知
网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
304 31
|
3月前
|
数据采集 搜索推荐 API
Python 原生爬虫教程:京东商品列表页面数据API
京东商品列表API是电商大数据分析的重要工具,支持开发者、商家和研究人员获取京东平台商品数据。通过关键词搜索、分类筛选、价格区间等条件,可返回多维度商品信息(如名称、价格、销量等),适用于市场调研与推荐系统开发。本文介绍其功能并提供Python请求示例。接口采用HTTP GET/POST方式,支持分页、排序等功能,满足多样化数据需求。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
Python/Anaconda双方案加持!Jupyter Notebook全平台下载教程来袭
Jupyter Notebook 是一款交互式编程与数据科学分析工具,支持40多种编程语言,广泛应用于机器学习、数据清洗和学术研究。其核心优势包括实时执行代码片段、支持Markdown文档与LaTeX公式混排,并可导出HTML/PDF/幻灯片等格式。本文详细介绍了Jupyter Notebook的软件定位、特性、安装方案(Anaconda集成环境与原生Python+PIP安装)、首次运行配置及常见问题解决方案,帮助用户快速上手并高效使用该工具。
|
3月前
|
数据采集 API 数据格式
Python 原生爬虫教程:京东商品详情页面数据API
本文介绍京东商品详情API在电商领域的应用价值及功能。该API通过商品ID获取详细信息,如基本信息、价格、库存、描述和用户评价等,支持HTTP请求(GET/POST),返回JSON或XML格式数据。对于商家优化策略、开发者构建应用(如比价网站)以及消费者快速了解商品均有重要意义。研究此API有助于推动电商业务创新与发展。
|
4月前
|
SQL 关系型数据库 MySQL
milvus-use教程 python
本项目参考vanna项目,获取数据库元数据和问题SQL对,存入Milvus向量数据库,并进行相似性检索。采用m3e-large嵌入模型,通过DatabaseManager类实现数据库连接持久化,MilvusVectorStore类封装了Milvus操作方法,如创建集合、添加数据和查询。项目提供init_collections、delete_collections等文件用于初始化、删除和管理集合。所用Milvus版本较新,API与vanna项目不兼容。 [项目地址](https://gitee.com/alpbeta/milvus-use)
302 9

推荐镜像

更多