请勿过度依赖Redis的过期监听

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 云栖号资讯:【点击查看更多行业资讯】在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来! Redis过期监听场景 业务中有类似等待一定时间之后执行某种行为的需求 , 比如30分钟之后关闭订单 . 网上有很多使用Redis过期监听的Demo , 但是其实这是个大坑 , 因为Redis不能确保key在指定时间被删除 , 也就造成了通知的延期。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!


Redis过期监听场景

业务中有类似等待一定时间之后执行某种行为的需求 , 比如30分钟之后关闭订单 . 网上有很多使用Redis过期监听的Demo , 但是其实这是个大坑 , 因为Redis不能确保key在指定时间被删除 , 也就造成了通知的延期。不多说 , 跑个测试。

测试情况

先说环境 , redis 运行在Docker容器中 ,分配了 一个cpu以及512MB内存, 在Docker中执行 redis-benchmark -t set -r 100000 -n 1000000 结果如下:

_49CE5BF2_C43C_45E7_A502_52258A8FB1F7__20200514154900

其实这里有些不严谨 benchmark 线程不应该在Docker容器内部运行 . 跑分的时候大概 benchmark 和redis 主线程各自持有50%CPU。

测试代码如下:


@Service
@Slf4j
public class RedisJob {
@Autowired
private StringRedisTemplate stringRedisTemplate;

public DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
public LocalDateTime end = LocalDateTime.of(LocalDate.of(2020, 5, 12), LocalTime.of(8, 0));

@Scheduled(cron = "0 56 * * * ?")
public void initKeys() {
    LocalDateTime now = LocalDateTime.now();
    ValueOperations<String, String> operations = stringRedisTemplate.opsForValue();
    log.info("开始设置key");
    LocalDateTime begin = now.withMinute(0).withSecond(0).withNano(0);
    for (int i = 1; i < 17; i++) {
        setExpireKey(begin.plusHours(i), 8, operations);
    }
    log.info("设置完毕: " + Duration.between(now, LocalDateTime.now()));
}

private void setExpireKey(LocalDateTime expireTime, int step, ValueOperations<String, String> operations) {
    LocalDateTime localDateTime = LocalDateTime.now().withNano(0);
    String nowTime = dateTimeFormatter.format(localDateTime);
    while (expireTime.getMinute() < 55) {
        operations.set(nowTime + "@" + dateTimeFormatter.format(expireTime), "A", Duration.between(expireTime, LocalDateTime.now()).abs());
        expireTime = expireTime.plusSeconds(step);
    }
}

}

大概意思就是每小时56分的时候 , 会增加一批在接下来16小时过期的key , 过期时间间隔8秒 , 且过期时间都在55分之前


@Slf4j
@Component
public class RedisKeyExpirationListener extends KeyExpirationEventMessageListener {
public RedisKeyExpirationListener(RedisMessageListenerContainer listenerContainer) {
    super(listenerContainer);
}

public DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
@Autowired
private StringRedisTemplate stringRedisTemplate;
@Override
public void onMessage(Message message, byte[] pattern) {
    String keyName = new String(message.getBody());
    LocalDateTime parse = LocalDateTime.parse(keyName.split("@")[1], dateTimeFormatter);
    long seconds = Duration.between(parse, LocalDateTime.now()).getSeconds();
    stringRedisTemplate.execute((RedisCallback<Object>) connection -> {
        Long size = connection.dbSize();
        log.info("过期key:" + keyName + " ,当前size:" + size + " ,滞后时间" + seconds);
        return null;
    });
}

}

这里是监测到过期之后打印当前的dbSize 以及滞后时间

@Bean
public RedisMessageListenerContainer configRedisMessageListenerContainer(RedisConnectionFactory connectionFactory) {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(100);
executor.setMaxPoolSize(100);
executor.setQueueCapacity(100);
executor.setKeepAliveSeconds(3600);
executor.setThreadNamePrefix("redis");
// rejection-policy:当pool已经达到max size的时候,如何处理新任务
// CALLER_RUNS:不在新线程中执行任务,而是由调用者所在的线程来执行
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
executor.initialize();
RedisMessageListenerContainer container = new RedisMessageListenerContainer();
// 设置Redis的连接工厂
container.setConnectionFactory(connectionFactory);
// 设置监听使用的线程池
container.setTaskExecutor(executor);
// 设置监听的Topic
return container;

}

设置Redis的过期监听 以及线程池信息 , 最后的测试结果是当key数量小于1万的时候 , 基本上都可以在10s内完成过期通知 , 但是如果数量到3万 , 就有部分key会延迟120s . 顺便贴一下我最新的日志

2020-05-13 22:16:48.383  : 过期key:2020-05-13 11:56:02@2020-05-13 22:14:08 ,当前size:57405 ,滞后时间160
2020-05-13 22:16:49.389 : 过期key:2020-05-13 11:56:02@2020-05-13 22:14:32 ,当前size:57404 ,滞后时间137
2020-05-13 22:16:49.591 : 过期key:2020-05-13 10:56:02@2020-05-13 22:13:20 ,当前size:57403 ,滞后时间209
2020-05-13 22:16:50.093 : 过期key:2020-05-13 20:56:00@2020-05-13 22:12:32 ,当前size:57402 ,滞后时间258
2020-05-13 22:16:50.596 : 过期key:2020-05-13 07:56:03@2020-05-13 22:13:28 ,当前size:57401 ,滞后时间202
2020-05-13 22:16:50.697 : 过期key:2020-05-13 20:56:00@2020-05-13 22:14:32 ,当前size:57400 ,滞后时间138
2020-05-13 22:16:50.999 : 过期key:2020-05-13 19:56:00@2020-05-13 22:13:44 ,当前size:57399 ,滞后时间186
2020-05-13 22:16:51.199 : 过期key:2020-05-13 20:56:00@2020-05-13 22:14:40 ,当前size:57398 ,滞后时间131
2020-05-13 22:16:52.205 : 过期key:2020-05-13 15:56:01@2020-05-13 22:16:24 ,当前size:57397 ,滞后时间28
2020-05-13 22:16:52.808 : 过期key:2020-05-13 06:56:03@2020-05-13 22:15:04 ,当前size:57396 ,滞后时间108
2020-05-13 22:16:53.009 : 过期key:2020-05-13 06:56:03@2020-05-13 22:16:40 ,当前size:57395 ,滞后时间13
2020-05-13 22:16:53.110 : 过期key:2020-05-13 20:56:00@2020-05-13 22:14:56 ,当前size:57394 ,滞后时间117
2020-05-13 22:16:53.211 : 过期key:2020-05-13 06:56:03@2020-05-13 22:13:44 ,当前size:57393 ,滞后时间189
2020-05-13 22:16:53.613 : 过期key:2020-05-13 15:56:01@2020-05-13 22:12:24 ,当前size:57392 ,滞后时间269
2020-05-13 22:16:54.317 : 过期key:2020-05-13 15:56:01@2020-05-13 22:16:00 ,当前size:57391 ,滞后时间54
2020-05-13 22:16:54.517 : 过期key:2020-05-13 18:56:00@2020-05-13 22:15:44 ,当前size:57390 ,滞后时间70
2020-05-13 22:16:54.618 : 过期key:2020-05-13 21:56:00@2020-05-13 22:14:24 ,当前size:57389 ,滞后时间150
2020-05-13 22:16:54.819 : 过期key:2020-05-13 17:56:00@2020-05-13 22:14:40 ,当前size:57388 ,滞后时间134
2020-05-13 22:16:55.322 : 过期key:2020-05-13 10:56:02@2020-05-13 22:13:52 ,当前size:57387 ,滞后时间183
2020-05-13 22:16:55.423 : 过期key:2020-05-13 07:56:03@2020-05-13 22:14:16 ,当前size:57386 ,滞后时间159

可以看到 ,当数量到达5万的时候 , 大部分都已经滞后了两分钟 , 对于业务方来说已经完全无法忍受了。

总结

可能到这里 , 你会说Redis 给你挖了一个大坑 , 但其实这些都在文档上写的明明白白。

尤其是在 Timing of expired events  中 , 明确的说明了 "Basically expired events are generated when the Redis server deletes the key and not when the time to live theoretically reaches the value of zero."  , 这两个文章读下来你会感觉 , Redis的过期策略其实也挺'Low'的。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-05-13
本文作者:迪壳
本文来自:“掘金”,了解相关信息可以关注“掘金”

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
6月前
|
存储 NoSQL Redis
04- Redis的数据过期策略有哪些 ?
Redis的数据过期策略包括**惰性删除**和**定期删除**。惰性删除在取出key时检查是否过期,节省CPU但可能延迟清理。定期删除则每隔一定时间删除一批过期key,通过限制操作频率减少CPU影响。默认每秒扫描10次,随机抽取20个键,若25%已过期则继续检查,最大执行时间25ms。Redis使用这两种策略的结合以平衡内存和CPU使用。
54 1
|
2月前
|
canal 缓存 NoSQL
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
根据对一致性的要求程度,提出多种解决方案:同步删除、同步删除+可靠消息、延时双删、异步监听+可靠消息、多重保障方案
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
|
6月前
|
存储 NoSQL Redis
【Redis】Redis如何实现key的过期删除
【Redis】Redis如何实现key的过期删除
|
2月前
|
缓存 NoSQL PHP
使用PHP-redis实现键空间通知监听key失效事件的技术与代码示例
通过上述方法,你可以有效地在PHP中使用Redis来监听键空间通知,特别是针对键失效事件。这可以帮助你更好地管理缓存策略,及时响应键的变化。
96 3
|
4月前
|
canal 缓存 NoSQL
Redis常见面试题(一):Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;先删除缓存还是先修改数据库,双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
Redis常见面试题(一):Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
|
4月前
|
监控 NoSQL Redis
Redis性能优化问题之配置 Redis 的自动碎片整理功能,如何解决
Redis性能优化问题之配置 Redis 的自动碎片整理功能,如何解决
|
5月前
|
监控 NoSQL Java
在 Spring Boot 中实现 Redis 的发布/订阅功能可以通过 RedisTemplate 和消息监听器来完成
在 Spring Boot 中实现 Redis 的发布/订阅功能可以通过 RedisTemplate 和消息监听器来完成
272 1
|
6月前
|
存储 NoSQL Java
熟悉Redis吗,那Redis的过期键删除策略是什么
对于Redis,我们业务开发一般都只关心Redis键值对的查询、修改操作,可能因为懒或者只想能用就行,呵呵。很少关心键值对存储在什么地方、键值对过期了会怎么样、Redis有没什么策略处理过期的键、Redis处理过期键又有什么作用?但这些问题却是Java程序员在Redis上进阶的必备知识,不要埋怨Java要学习的系统知识为什么这么多,因为这些确确实实是进阶的程序员所必须掌握的。我们往下看看~
熟悉Redis吗,那Redis的过期键删除策略是什么
|
5月前
|
存储 缓存 NoSQL
redis的过期淘汰策略
只能存储 20w 条数据,那肯定要保证redis存储的都是热点数据,即:被频繁访问到的数据;并且要保证Redis的内存能够存放20w数据,要计算出Redis内存的大小。
47 0
|
6月前
|
NoSQL Redis 数据库
Redis实现数据持久性主要依赖两种机制
【5月更文挑战第15天】Redis持久化包括RDB快照和AOF日志。RDB通过定时内存数据快照生成文件,恢复速度快但可能丢失部分数据;AOF记录每次写操作,实时性好但文件大、恢复慢。混合持久化兼顾两者优点,提供数据安全与性能平衡。用户可按需选择或组合使用策略。
41 2
下一篇
无影云桌面