在量化交易中应用卷积神经网络CNN做时间序列预测

简介: 在量化交易中使用CNN做时间序列预测的理论,以及实现框架

量化交易中,最直接的判断策略是根据历史的价格走势或者交易量的变化,来预测未来的价格。这一点对于传统看K线的形态派,和现在使用机器学习的炼丹派应该都是一样的。对价格预测的有效性基于两个假设:

  1. 市场参与者的某种交易心理或者说情绪,会形成特定模式的下单流,从结果来看,就是造成特定的交易量演变以及价格走势。也就是说价格波动不是一个完全的随机游走过程,而是前后关联的。
  2. 市场参与者不会在某个时间点全部离场而进入全新的交易者,而是一个逐渐加入/退出的过程。这导致一个模式不会马上消失,而是逐渐演变。也就是说价格波动的形态是会重复发生的。

通过机器学习方法进行的量化预测,本质上就是先基于交易量和价格这两个市场行为的结果,找出潜在的交易心理/模式,当我们找到的模式在未来某个时间点再重现的时候,我们就可以从中获利。这个过程有点像自然语言处理,比如机器翻译要把中文翻译为英文,第一步是找出中文背后的语义,然后在把语义变为英文,这背后的语义就跟我们所说的交易模式一样,不可描述。

LSTM

时间序列预测,这个是一个典型的序列问题,直观的可以用循环神经网络(RNN, Recurrent Neural Networks)解决,RNN应用了序列的上下文关系。多数情况都会使用长短期记忆(LSTM,Long Short-Term Memory)网络,一种特殊的RNN。RNN在 语音识别、机器翻译这些场景应用很广泛。RNN的结构:

RNN_longtermdependencies

原始RNN的缺点是无法实现长期依赖(Long-Term Dependencies),也就是说随着时间序列的增长,序列的开头对于后面的作用几乎不存在了。LSTM是这针对这个问题进行优化的RNN变种,它可以保存几十个步骤以前的信息。LSTM的实现细节可以参考Understanding LSTM Networks -- colah's blog

但是在金融时间序列的问题上,时间序列的会很长,可能上千个神经元,LSTM无法解决这么久远的信息依赖。另外一个问题是RNN模型的训练过程的效率非常低,因为同一层的神经元计算是顺序进行的,这个顺序没法实现并行化。现在最新的研究也是正在放弃RNN/LSTM,比如 ResNet 和 Attention。

CNN

卷积神经网络(CNN,Convolutional Neural Networks)在计算机视觉中应用非常广泛,其最基本的理念就是对图像进行特征抽取。特征抽取是基于图像的两个性质:局部相关性和空间不变性。先说局部相关性,图像的本质是一个像素点组成的矩阵,单个像素与周围相邻的像素是有关联的,这种关联可能是他们共同组成图像中的一个结构,也叫特征。而空间不变性,就是指在对图像进行变换之后,一系列列相邻的像素点组成的特征依然存在。我们先看一下一个完整的CNN框架,这里是的目标是识别图片中的数字:

CNN_jpeg

CNN里面主要包含两个操作:卷积和池化。池化就是对图片数据进行采样,是一个相对简单的过程。卷积操作才是特征提取的核心。先要定义一个卷积核,不同的卷积核定义的是想要提取的目标特征特征,下面是卷积运算的计算过程:

Converlution

常用的卷积核定义以及特征提取的效果:

Conv

CNN的具体细节参考一下两篇博文,上文的图片也是来自于这两篇文章:

对于量化交易中假设时间序列数据中存在特定的模式,可以关联到上文的图片特征,理解为时间维度上的局部相关性,也就是说相邻的时间点组成了一个模式,我们可以通过CNN把潜在的模式提取出来。这个应用从直观上不是很好理解,因为从时间序列的角度来说,点与点之间是有先后的顺序关系的,也就一般所说的上下文,但是在CNN中,这个上下文信息被平面化了,认为所有的历史信息对于当前点的影响都是等价的。基于这一点,也有将CNN和LSTM结合在一起使用的工作:Twitter Sentiment Analysis using combined LSTM-CNN Models。当然从卷积运算的角度来看,卷积核探测到的模式其实是确定了其中的相对位置关系的,这也可以说是上下文信息的一种变形。

使用CNN相对于LSTM最大的优点是它可以运用并行化计算,计算效率远比LSTM高,从而我们可以把网络做的更深。

实现

我们先把问题进行转化,其实我们可以把我们的目标弱化,我们并不需要知道未来某一时刻价格精确的位置,而是只需要知道价格波动在未来是否达到了我们可以盈利的预期值,也就是价格是否涨/跌超过一个阈值,这样原始的问题我们形式化为一个分类问题。

下图是借用CNN处理文本处理的框架,并在图上做了修改,A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification

CNN_TimeSeries

在这个框架中,卷积运算的维度从上文介绍的图片分类的2维空间信息转变为1维时间信息。而横向(d=5)的数据是同一类别的量化因子,作为描述同一时间点的原始特征值。比如基于价格计算出来的不同周期的MACD,也可以直接是价格的OHLC,只要保证不同列的因子数据是可比较的就行。多个不同的大小的核,表示想要探测不同时间长度的模式。不同类型的因子可以通过上述的框架中,最后一步softmax之前,把所有因子中提取出来的特征值拼接在一起,最后做分类。这个模型是借用文本分类的框架,为了方便说明在在1维数据中使用CNN的过程。

PyTorch中的一维卷积nn.Conv1d就可以完成时间序列上的卷积运算,参考pytorch之nn.Conv1d详解

class Conv1d(_ConvNd):
    """
    in_channels (int): 输入通道数,也就是上图中的d=5
    out_channels (int): 卷积产生的通道。有多少个out_channels,就需要多少个1维卷积
    kernel_size (int or tuple): 卷积核的大小,上图3组核的的大小分别为4、5、6
    stride (int or tuple, optional): 卷积步长,每一次卷积计算之间的跨度,默认1
    padding (int or tuple, optional): 输入的每一条边补充0的层数,默认0
    dilation (int or tuple, optional): 卷积核元素之间的间距
    groups (int, optional): 输入通道到输出通道的阻塞连接数
    bias (bool, optional): 是否添加偏置项
    """

用PyTorch定义一个处理时间序列的CNN网络:

import torch
import torch.nn as nn

class TimeSeriesCNN(nn.Module):
    def __init__(self):
        super(TimeSeriesCNN, self).__init__()
        kernel_sizes = [4, 5, 6]
        ts_len = 7 # length of time series
        hid_size = 1
        self.convs = nn.ModuleList([
            nn.Sequential(
                nn.Conv1d(
                    in_channels=5,
                    out_channels=2,
                    kernel_size=kernel_size,
                ),
                nn.ReLU(),
                nn.MaxPool1d(kernel_size=ts_len - kernel_size + 1))
            for kernel_size in kernel_sizes
        ])
        self.fc = nn.Linear(
            in_features=hid_size * len(kernel_sizes),
            out_features=3,
        )

    def forward(self, x):
        output = [conv(x) for conv in self.convs]
        output = torch.cat(output, dim=1)
        output = output.view(output.size(1), -1)
        output = self.fc(output)
        return output
目录
相关文章
|
5天前
|
传感器 网络协议 C语言
C语言在网络编程中的实际应用
C语言在网络编程中的实际应用
14 1
|
7天前
|
设计模式 安全 测试技术
深入理解与应用自动化测试框架 — 以Selenium为例网络防线的构筑者:洞悉网络安全与信息安全的核心要素
【5月更文挑战第29天】 在快速迭代的软件开发过程中,自动化测试已成为提高测试效率、确保软件质量的重要手段。本文将深入探讨自动化测试框架Selenium的核心概念、架构以及实际应用中的关键技巧,旨在为读者提供一篇系统性的分析与实践指南。文章首先概述了自动化测试的必要性和Selenium框架的基本特征;随后详细剖析了Selenium的组件结构,并结合实例讲解如何高效地设计和执行测试用例;最后,讨论了当前自动化测试面临的挑战及未来发展趋势。
|
3天前
|
机器学习/深度学习 自动驾驶 TensorFlow
图像识别:卷积神经网络(CNN)的应用
【6月更文挑战第2天】卷积神经网络(CNN)是图像识别的得力工具,能识别物体、人脸等。广泛应用于安防、医疗和自动驾驶等领域。通过学习图像特征,CNN实现智能识别。示例代码展示了使用TensorFlow构建简单CNN识别MNIST手写数字。尽管实际应用更复杂,但CNN已显著改变生活,并将持续带来惊喜。
27 0
|
4天前
|
机器学习/深度学习 存储 算法
基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络
该文介绍了使用MATLAB2022A进行时间序列预测的算法,结合CNN和RNN(LSTM或GRU)处理数据。CNN提取局部特征,RNN处理序列依赖。LSTM通过门控机制擅长长序列,GRU则更为简洁、高效。程序展示了训练损失、精度随epoch变化的曲线,并对训练及测试数据进行预测,评估预测误差。
|
5天前
|
安全 网络安全 区块链
【计算巢】区块链技术在网络安全中的应用与挑战
【5月更文挑战第31天】区块链技术为网络安全带来新机遇,其去中心化、不可篡改和共识机制特性有助于身份验证、数据完整性保护及提高网络抗攻击性。但面临性能、隐私保护和法规监管等挑战。简单Python代码展示了区块链在数据完整性验证的应用。随着技术发展,区块链有望在网络安全领域发挥更大作用,未来可能与其它安全技术融合,为网络安全提供更强保障。
|
5天前
|
机器学习/深度学习 数据可视化 计算机视觉
【YOLOv8改进】MCA:用于图像识别的深度卷积神经网络中的多维协作注意力 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO的创新改进和实战案例,包括多维协作注意力(MCA)机制,它通过三分支架构同时处理通道、高度和宽度注意力,提高CNN性能。MCA设计了自适应组合和门控机制,增强特征表示,且保持轻量化。该模块适用于各种CNN,实验证明其在图像识别任务上的优越性。此外,文章还展示了如何在YOLOv8中引入MCA层的代码实现和相关任务配置。
|
5天前
|
机器学习/深度学习 安全 网络安全
云端防御:云计算环境中的网络安全与信息保护策略深度学习在图像识别中的应用与挑战
【5月更文挑战第31天】 在数字化转型的浪潮中,云计算已成为企业及个人存储和处理数据的首选平台。然而,随着云服务的广泛采用,网络安全威胁也随之增加,使得信息安全成为亟待解决的挑战。本文聚焦于云计算环境特有的安全风险,探讨了多层次、多维度的防御策略,旨在为读者提供一套综合的云安全解决方案蓝图。通过分析当前云服务中的安全缺陷,并提出相应的防护措施,文章不仅强调了技术层面的对策,还涉及了管理与合规性方面的重要性。
|
5天前
|
JSON Android开发 开发者
构建高效Android应用:采用Kotlin协程优化网络请求
【5月更文挑战第31天】 在移动开发领域,尤其是针对Android平台,网络请求的管理和性能优化一直是开发者关注的焦点。随着Kotlin语言的普及,其提供的协程特性为异步编程提供了全新的解决方案。本文将深入探讨如何利用Kotlin协程来优化Android应用中的网络请求,从而提升应用的响应速度和用户体验。我们将通过具体实例分析协程与传统异步处理方式的差异,并展示如何在现有项目中集成协程进行网络请求优化。
|
5天前
|
存储 安全 算法
网络安全与信息安全:防范漏洞、应用加密、提升意识
【5月更文挑战第31天】在数字化的浪潮中,网络安全与信息安全已成为守护个人隐私、企业资料与国家安全的重要屏障。本文将深入探讨网络安全漏洞的成因与对策,解析加密技术的种类及其应用,并强调安全意识在整体防御体系中的核心作用。通过技术性分析与实践建议,旨在为读者提供全面的网络安全知识框架和实用的防护指南。
|
5天前
|
机器学习/深度学习 人工智能 算法
中草药识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
中草药识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
39 0

热门文章

最新文章