一、特点:
0.无监督的神经网络
1.基于梯度下降
2.固定学习速率
3.离线学习(批量学习)
4.隐藏层数目范围:[1, +∞)
4.可以选择激活函数类型
5.numpy的矩阵运算(黑科技)
6.友好的 API (高仿sklearn, 没办法,太好用了 ^_^!!!)
7.测试用到了sklearn库的datasets获取数据,未安装的朋友pip安装即可
8.神经网络学习过程的形象描述:正向传播、反向传播像海浪一样来回冲刷权值W与偏置b
9.用数组的形式实现各层的权值(矩阵)和偏置(向量),其好处是可以用循环来处理各个层。从而可以对隐藏层的数目没有了限制!!附图:
10.忍不住再补充一个想法:上面这个图可以泛化应用到各种循环流水作业的场景
二、效果:
未分类:
隐藏层:[6,4]效果:
隐藏层:[6,5,3]效果:
隐藏层:[6,8,5]效果:
隐藏层:[7,9,12,8,5]效果:(看来不是隐藏层越多,效果越好啊!)
三、代码:
import numpy as np ''' 无监督的神经网络 1.基于梯度下降 2.固定学习速率 3.离线学习(批量学习) 4.可以选择激活函数类型 5.numpy强大的矩阵运算能力 ''' class NeuralNetworks(object): ''' 神经网络 用法: >>> X = np.array([[0,0],[0,1],[1,0],[1,1]]) >>> y = np.array([0,1,2,3]) >>> hiden_layers = [4,6] >>> active_type = ['sigmoid', 'sigmoid', 'sigmoid'] >>> nn = NeuralNetworks(hiden_layers, active_type) >>> nn.fit(X, y) >>> print(nn.predict(X)) ''' def __init__(self, hiden_layers=None, active_type=None, n_iter=10000, epsilon=0.01, lamda=0.01, only_hidens=True): '''接收部分参数''' self.epsilon = epsilon # 学习速率 self.lamda = lamda # 正则化强度 self.n_iter = n_iter # 迭代次数 if hiden_layers is None: hiden_layers = [5] # 默认:隐藏层数目1,节点数目5 self.hiden_layers = hiden_layers # 各隐藏层节点数 (list) self.only_hidens = only_hidens # 接收的是否仅仅是隐藏层,默认True # 激活函数类型 self.active_functions = { 'sigmoid': self._sigmoid, 'tanh': self._tanh, # 只有这个激活函数才有效果!! 'radb': self._radb, #'line': self._line, #会出错! } # 激活函数的导函数类型 self.derivative_functions = { 'sigmoid': self._sigmoid_d, 'tanh': self._tanh_d, 'radb': self._radb_d, #'line': self._line_d, } if active_type is not None: self.active_type = active_type else: length = len(self.hiden_layers) length = length + 1 if self.only_hidens else length - 1 self.active_type = ['tanh'] * length # 默认激活函数类型 print(length) print(self.active_type) def _sigmoid(self, z): if np.max(z) > 600: z[z.argmax()] = 600 return 1.0 / (1.0 + np.exp(-z)) def _tanh(self, z): return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z)) def _radb(self, z): return np.exp(-z * z) def _line(self, z): return z def _sigmoid_d(self, z): return z * (1.0 - z) def _tanh_d(self, z): return 1.0 - z * z def _radb_d(self, z): return -2.0 * z * np.exp(-z * z) def _line_d(self, z): return np.ones(z.size) # 全一 def _build(self, X, y): '''构建网络''' self.X = X self.y = y # 变量 self.n_examples = y.size # 样本集数目 self.n_features = X[0].size # 样本特征数目 self.n_classes = np.unique(y).size # 样本类别数目 all_layers = [] # 各层节点数目(输入、隐藏、输出) 其中隐藏层可多个!! if self.only_hidens: all_layers.append(self.n_features) all_layers.extend(self.hiden_layers) all_layers.append(self.n_classes) else: all_layers.extend(self.hiden_layers) # 节点数目 (向量) self.n = np.array(all_layers) # 如:[3, 4, 2] self.size = self.n.size # 层的总数,如上:3 # 层 (向量) self.a = np.empty(self.size, dtype=object) self.delta_a = np.empty(self.size, dtype=object) # 偏置 (向量) self.b = np.empty(self.size - 1, dtype=object)# 先占位(置空),dtype=object !如下皆然 self.delta_b = np.empty(self.size - 1, dtype=object) # 权 (矩阵) self.W = np.empty(self.size - 1, dtype=object) self.delta_W = np.empty(self.size - 1, dtype=object) # 填充 mu, sigma = 0, 0.1 # 均值、方差 for i in range(self.size): self.a[i] = np.ones(self.n[i]) self.delta_a[i] = np.zeros(self.n[i]) if i < self.size - 1: self.b[i] = np.ones(self.n[i+1]) # 全一 self.W[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化 self.delta_b[i] = np.zeros(self.n[i+1]) self.delta_W[i] = np.zeros((self.n[i], self.n[i+1])) def _forward(self, X): '''前向传播(批量)''' self.a[0] = X # 便于使用循环 for i in range(self.size - 1): nets = np.dot(self.a[i], self.W[i]) + self.b[i] #self.a[i+1] = np.tanh(nets) self.a[i+1] = self.active_functions[self.active_type[i]](nets) # 加了激活函数 exp_scores = np.exp(nets) # 注意这里还是 nets!! probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) return probs def _backward(self, probs): '''反向传播(批量)''' last = self.size - 1 self.delta_a[last] = probs self.delta_a[last][range(self.n_examples), self.y] -= 1 for i in range(last - 1, -1, -1): # 注意:因为是全部样本,所以有些地方要转置,或者前后换位 self.delta_W[i] = np.dot(self.a[i].T, self.delta_a[i+1]) self.delta_b[i] = np.sum(self.delta_a[i+1], axis=0) #self.delta_a[i] = np.dot(self.delta_a[i+1], self.W[i].T) * (1 - self.a[i]**2) self.delta_a[i] = np.dot(self.delta_a[i+1], self.W[i].T) * self.derivative_functions[self.active_type[i]](self.a[i]) # 加了激活函数的导函数 # 正则化 self.delta_W[i] += self.lamda * self.W[i] #self.delta_b[i] += 0.0 # 梯度下降 self.W[i] += -self.epsilon * self.delta_W[i] self.b[i] += -self.epsilon * self.delta_b[i] def _calculate_loss(self): '''损失函数(批量)''' probs = self._forward(self.X) # 批量: self.X # 计算损失 corect_logprobs = -np.log(probs[range(self.n_examples), self.y]) data_loss = np.sum(corect_logprobs) # 添加正则项损失(可选) data_loss += self.lamda/2 * (sum([np.sum(np.square(w)) for w in self.W])) return 1./self.n_examples * data_loss def fit(self, X, y): '''拟合''' # 将神经网络搭建完整 self._build(X, y) # 按迭代次数,依次: for i in range(self.n_iter): # 前向传播 probs = self._forward(self.X) # 反向传播 self._backward(probs) # 计算损失 if i % 1000 == 0: loss = self._calculate_loss() print("迭代次数:{}\t损失: {}".format(i, loss)) def predict(self, x): '''预测(批量)''' probs = self._forward(x) return np.argmax(probs, axis=1) # 以下皆为测试 #>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> def plot_decision_boundary(plt, xx, yy, Z, X, y, title): '''作图函数''' # 等高线图 plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # 散点图 plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('萼片长度') plt.ylabel('萼片宽度') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(title) plt.show() def test2(): '''第二个测试函数''' import matplotlib.pyplot as plt from sklearn import datasets # -------------------------------------------- # 解决matplotlib中文乱码 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False # -------------------------------------------- # ====================================================== # 生成数据 np.random.seed(0) X, y = datasets.make_moons(200, noise=0.20) h = .02 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # ====================================================== # 先作散点图,看看数据特点 plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral) plt.show() # 定义神经网络 nn = NeuralNetworks([6,5,3]) # 拟合 nn.fit(X, y) # 预测 Z = nn.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # 作图 plot_decision_boundary(plt, xx, yy, Z, X, y, "预测效果图") def test1(): '''第一个测试函数''' # 第一步:准备数据 # 说明:逻辑异或(XOR) X = np.array([[-1,-1],[-1,1],[1,-1],[1,1]]) y = np.array([0,1,2,3]) # 第二步:创建神经网络 # 说明:1.两个隐藏层,节点数目分别为4、6有两个节点 # 2.输入层和输出层节点数目自动识别,默认不输入 # 3.若包含输入层与输出层,可以设置参数 only_hidens=True # 如:nn = NeuralNetworks([2, 4, 6, 4], only_hidens=True) # # 4.完整例子:nn = NeuralNetworks(hiden_layers=[4, 6], # active_type = ['tanh', 'tanh', 'tanh'], # n_iter=10000, # epsilon=0.01, # lamda=0.01, # only_hidens=True) nn = NeuralNetworks([2, 4, 6, 4], active_type = ['tanh', 'tanh', 'sigmoid'], only_hidens=False) # 第三步:拟合 nn.fit(X, y) # 第四步:预测 print(nn.predict(X)) if __name__ == '__main__': test1() test2()
一、特点:
0.无监督的神经网络
1.基于梯度下降
2.固定学习速率
3.离线学习(批量学习)
4.隐藏层数目范围:[1, +∞)
4.可以选择激活函数类型
5.numpy的矩阵运算(黑科技)
6.友好的 API (高仿sklearn, 没办法,太好用了 ^_^!!!)
7.测试用到了sklearn库的datasets获取数据,未安装的朋友pip安装即可
8.神经网络学习过程的形象描述:正向传播、反向传播像海浪一样来回冲刷权值W与偏置b
9.用数组的形式实现各层的权值(矩阵)和偏置(向量),其好处是可以用循环来处理各个层。从而可以对隐藏层的数目没有了限制!!附图:
10.忍不住再补充一个想法:上面这个图可以泛化应用到各种循环流水作业的场景
二、效果:
未分类:
隐藏层:[6,4]效果:
隐藏层:[6,5,3]效果:
隐藏层:[6,8,5]效果:
隐藏层:[7,9,12,8,5]效果:(看来不是隐藏层越多,效果越好啊!)
三、代码:
import numpy as np ''' 无监督的神经网络 1.基于梯度下降 2.固定学习速率 3.离线学习(批量学习) 4.可以选择激活函数类型 5.numpy强大的矩阵运算能力 ''' class NeuralNetworks(object): ''' 神经网络 用法: >>> X = np.array([[0,0],[0,1],[1,0],[1,1]]) >>> y = np.array([0,1,2,3]) >>> hiden_layers = [4,6] >>> active_type = ['sigmoid', 'sigmoid', 'sigmoid'] >>> nn = NeuralNetworks(hiden_layers, active_type) >>> nn.fit(X, y) >>> print(nn.predict(X)) ''' def __init__(self, hiden_layers=None, active_type=None, n_iter=10000, epsilon=0.01, lamda=0.01, only_hidens=True): '''接收部分参数''' self.epsilon = epsilon # 学习速率 self.lamda = lamda # 正则化强度 self.n_iter = n_iter # 迭代次数 if hiden_layers is None: hiden_layers = [5] # 默认:隐藏层数目1,节点数目5 self.hiden_layers = hiden_layers # 各隐藏层节点数 (list) self.only_hidens = only_hidens # 接收的是否仅仅是隐藏层,默认True # 激活函数类型 self.active_functions = { 'sigmoid': self._sigmoid, 'tanh': self._tanh, # 只有这个激活函数才有效果!! 'radb': self._radb, #'line': self._line, #会出错! } # 激活函数的导函数类型 self.derivative_functions = { 'sigmoid': self._sigmoid_d, 'tanh': self._tanh_d, 'radb': self._radb_d, #'line': self._line_d, } if active_type is not None: self.active_type = active_type else: length = len(self.hiden_layers) length = length + 1 if self.only_hidens else length - 1 self.active_type = ['tanh'] * length # 默认激活函数类型 print(length) print(self.active_type) def _sigmoid(self, z): if np.max(z) > 600: z[z.argmax()] = 600 return 1.0 / (1.0 + np.exp(-z)) def _tanh(self, z): return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z)) def _radb(self, z): return np.exp(-z * z) def _line(self, z): return z def _sigmoid_d(self, z): return z * (1.0 - z) def _tanh_d(self, z): return 1.0 - z * z def _radb_d(self, z): return -2.0 * z * np.exp(-z * z) def _line_d(self, z): return np.ones(z.size) # 全一 def _build(self, X, y): '''构建网络''' self.X = X self.y = y # 变量 self.n_examples = y.size # 样本集数目 self.n_features = X[0].size # 样本特征数目 self.n_classes = np.unique(y).size # 样本类别数目 all_layers = [] # 各层节点数目(输入、隐藏、输出) 其中隐藏层可多个!! if self.only_hidens: all_layers.append(self.n_features) all_layers.extend(self.hiden_layers) all_layers.append(self.n_classes) else: all_layers.extend(self.hiden_layers) # 节点数目 (向量) self.n = np.array(all_layers) # 如:[3, 4, 2] self.size = self.n.size # 层的总数,如上:3 # 层 (向量) self.a = np.empty(self.size, dtype=object) self.delta_a = np.empty(self.size, dtype=object) # 偏置 (向量) self.b = np.empty(self.size - 1, dtype=object)# 先占位(置空),dtype=object !如下皆然 self.delta_b = np.empty(self.size - 1, dtype=object) # 权 (矩阵) self.W = np.empty(self.size - 1, dtype=object) self.delta_W = np.empty(self.size - 1, dtype=object) # 填充 mu, sigma = 0, 0.1 # 均值、方差 for i in range(self.size): self.a[i] = np.ones(self.n[i]) self.delta_a[i] = np.zeros(self.n[i]) if i < self.size - 1: self.b[i] = np.ones(self.n[i+1]) # 全一 self.W[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化 self.delta_b[i] = np.zeros(self.n[i+1]) self.delta_W[i] = np.zeros((self.n[i], self.n[i+1])) def _forward(self, X): '''前向传播(批量)''' self.a[0] = X # 便于使用循环 for i in range(self.size - 1): nets = np.dot(self.a[i], self.W[i]) + self.b[i] #self.a[i+1] = np.tanh(nets) self.a[i+1] = self.active_functions[self.active_type[i]](nets) # 加了激活函数 exp_scores = np.exp(nets) # 注意这里还是 nets!! probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) return probs def _backward(self, probs): '''反向传播(批量)''' last = self.size - 1 self.delta_a[last] = probs self.delta_a[last][range(self.n_examples), self.y] -= 1 for i in range(last - 1, -1, -1): # 注意:因为是全部样本,所以有些地方要转置,或者前后换位 self.delta_W[i] = np.dot(self.a[i].T, self.delta_a[i+1]) self.delta_b[i] = np.sum(self.delta_a[i+1], axis=0) #self.delta_a[i] = np.dot(self.delta_a[i+1], self.W[i].T) * (1 - self.a[i]**2) self.delta_a[i] = np.dot(self.delta_a[i+1], self.W[i].T) * self.derivative_functions[self.active_type[i]](self.a[i]) # 加了激活函数的导函数 # 正则化 self.delta_W[i] += self.lamda * self.W[i] #self.delta_b[i] += 0.0 # 梯度下降 self.W[i] += -self.epsilon * self.delta_W[i] self.b[i] += -self.epsilon * self.delta_b[i] def _calculate_loss(self): '''损失函数(批量)''' probs = self._forward(self.X) # 批量: self.X # 计算损失 corect_logprobs = -np.log(probs[range(self.n_examples), self.y]) data_loss = np.sum(corect_logprobs) # 添加正则项损失(可选) data_loss += self.lamda/2 * (sum([np.sum(np.square(w)) for w in self.W])) return 1./self.n_examples * data_loss def fit(self, X, y): '''拟合''' # 将神经网络搭建完整 self._build(X, y) # 按迭代次数,依次: for i in range(self.n_iter): # 前向传播 probs = self._forward(self.X) # 反向传播 self._backward(probs) # 计算损失 if i % 1000 == 0: loss = self._calculate_loss() print("迭代次数:{}\t损失: {}".format(i, loss)) def predict(self, x): '''预测(批量)''' probs = self._forward(x) return np.argmax(probs, axis=1) # 以下皆为测试 #>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> def plot_decision_boundary(plt, xx, yy, Z, X, y, title): '''作图函数''' # 等高线图 plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # 散点图 plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('萼片长度') plt.ylabel('萼片宽度') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(title) plt.show() def test2(): '''第二个测试函数''' import matplotlib.pyplot as plt from sklearn import datasets # -------------------------------------------- # 解决matplotlib中文乱码 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False # -------------------------------------------- # ====================================================== # 生成数据 np.random.seed(0) X, y = datasets.make_moons(200, noise=0.20) h = .02 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # ====================================================== # 先作散点图,看看数据特点 plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral) plt.show() # 定义神经网络 nn = NeuralNetworks([6,5,3]) # 拟合 nn.fit(X, y) # 预测 Z = nn.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # 作图 plot_decision_boundary(plt, xx, yy, Z, X, y, "预测效果图") def test1(): '''第一个测试函数''' # 第一步:准备数据 # 说明:逻辑异或(XOR) X = np.array([[-1,-1],[-1,1],[1,-1],[1,1]]) y = np.array([0,1,2,3]) # 第二步:创建神经网络 # 说明:1.两个隐藏层,节点数目分别为4、6有两个节点 # 2.输入层和输出层节点数目自动识别,默认不输入 # 3.若包含输入层与输出层,可以设置参数 only_hidens=True # 如:nn = NeuralNetworks([2, 4, 6, 4], only_hidens=True) # # 4.完整例子:nn = NeuralNetworks(hiden_layers=[4, 6], # active_type = ['tanh', 'tanh', 'tanh'], # n_iter=10000, # epsilon=0.01, # lamda=0.01, # only_hidens=True) nn = NeuralNetworks([2, 4, 6, 4], active_type = ['tanh', 'tanh', 'sigmoid'], only_hidens=False) # 第三步:拟合 nn.fit(X, y) # 第四步:预测 print(nn.predict(X)) if __name__ == '__main__': test1() test2()
本文转自罗兵博客园博客,原文链接:http://www.cnblogs.com/hhh5460/p/5126268.html
,如需转载请自行联系原作者