Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

经济广告是指以营利为目的的广告,通常是商业广告,它是为推销商品或提供服务,以付费方式通过广告媒体向消费者或用户传播商品或服务信息的手段。商品广告就是这样的经济广告。为促进产品的销售,厂商经常会通过多个渠道投放广告。本项目将根据某公司在电视、广播和报纸上的广告投放数据预测广告收益,作为公司制定广告策略的重要参考依据。

本项目通过通过人工神经网络回归模型来进行广告投放数据的预测,并通过网格搜索算法进行模型的调优,使模型达到最优的效果。 

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

编号 

变量名称

描述

1

日期

 

2

电视

 

3

广播

 

4

报纸

 

5

收益

标签

数据详情如下(部分展示):

image.png

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

image.png

关键代码:

image.png

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

image.png

从上图可以看到,总共有5个变量,数据中无缺失值,共1000条数据。

关键代码:

image.png

 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

image.png

关键代码如下:

image.png

4.探索性数据分析

4.1 收益的趋势图

用Matplotlib工具的plot()方法绘制折线图:

image.png

4.2 收益分布直方图

用Matplotlib工具的hist()方法绘制直方图:

image.png

从上图可以看出,收益主要分布在150~250之间。

4.3 电视广告投放方式与收益的散点图与拟合线

seaborn工具的lmplot ()方法绘制散点图与拟合线:

 

image.png

从上图可以看出,电视广告投入方式和收益呈现很好的线性关系。

4.4 相关性分析

image.png

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

image.png

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

image.png

6.构建人工神经网络回归模型

主要使用MLPRegressor算法和网格搜索优化算法,用于目标回归。 

6.1默认参数构建模型

编号

模型名称

参数

1

人工神经网络回归模型

hidden_layer_sizes=(100

2

max_iter=200

 

模型名称

指标名称

指标值

测试集

人工神经网络回归模型

  R方

0.8327

均方误差

1201.9319

可解释方差值

0.8417

平均绝对误差

27.3701

 

6.2 通过网格搜索寻找的最优参数

关键代码:

image.png

 

最优参数:

image.png

6.3 最优参数值构建模型 

编号

模型名称

参数

1

人工神经网络回归模型

hidden_layer_sizes=(50,50,50

2

max_iter=1000

 

7.模型评估

7.1评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

模型名称

指标名称

指标值

测试集

人工神经网络回归模型

  R方

0.9412

均方误差

422.1933

可解释方差值

0.9436

平均绝对误差

16.8675

从上表可以看出,R方0.9412 较默认参数优有较大的提升;可解释方差值0.6777 较默认参数优有较大的提升,优化后的回归模型效果良好。

关键代码如下: 

image.png

7.2 真实值与预测值对比图

image.png

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。

8.结论与展望

综上所述,本文采用了人工神经网络回归算法的来构建回归模型,通过网格搜索算法找到最优的隐藏层数量和神经元数量,最终证明了我们提出的模型效果很好,可用于实际生产中进行预测,使企业发展得更好,利润更多。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1maF5nbZai78Tqv3K_ymeQw 
提取码:hey5
相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
26天前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 数据采集 传感器
具有多种最大功率点跟踪(MPPT)方法的光伏发电系统(P&O-增量法-人工神经网络-模糊逻辑控制-粒子群优化)之使用粒子群算法的最大功率点追踪(MPPT)(Simulink仿真实现)
具有多种最大功率点跟踪(MPPT)方法的光伏发电系统(P&O-增量法-人工神经网络-模糊逻辑控制-粒子群优化)之使用粒子群算法的最大功率点追踪(MPPT)(Simulink仿真实现)
|
1月前
|
机器学习/深度学习 算法 安全
计及需求响应的粒子群算法求解风能、光伏、柴油机、储能容量优化配置(Matlab代码实现)
计及需求响应的粒子群算法求解风能、光伏、柴油机、储能容量优化配置(Matlab代码实现)
|
1月前
|
算法 数据安全/隐私保护
基于PSO粒子群优化算法的256QAM星座图的最优概率整形matlab仿真,对比PSO优化前后整形星座图和误码率
本项目基于MATLAB 2022a仿真256QAM系统,采用概率星座整形(PCS)技术优化星座点分布,结合粒子群优化(PSO)算法搜索最优整形因子v,降低误码率,提升传输性能。核心程序包含完整优化流程。
62 0
|
28天前
|
机器学习/深度学习 算法 数据可视化
近端策略优化算法PPO的核心概念和PyTorch实现详解
本文深入解析了近端策略优化(PPO)算法的核心原理,并基于PyTorch框架实现了完整的强化学习训练流程。通过Lunar Lander环境展示了算法的全过程,涵盖环境交互、优势函数计算、策略更新等关键模块。内容理论与实践结合,适合希望掌握PPO算法及其实现的读者。
237 2
近端策略优化算法PPO的核心概念和PyTorch实现详解
|
25天前
|
机器学习/深度学习 算法 新能源
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的XGBoost时间序列预测算法matlab仿真
本程序基于Matlab 2024b实现,结合粒子群优化(PSO)与XGBoost算法,用于时间序列预测。通过PSO优化XGBoost超参数,提升预测精度。程序包含完整注释与操作视频,运行后生成预测效果图及性能评估指标RMSE。
|
25天前
|
存储 算法 安全
【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)
【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)
127 0
|
25天前
|
机器学习/深度学习 数据采集 算法
【创新无忧】基于白鲨算法WSO优化广义神经网络GRNN电机故障诊断(Matlab代码实现)
【创新无忧】基于白鲨算法WSO优化广义神经网络GRNN电机故障诊断(Matlab代码实现)

推荐镜像

更多