揭秘In-Context Learning(ICL):大型语言模型如何通过上下文学习实现少样本高效推理[示例设计、ICL机制详解]

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 揭秘In-Context Learning(ICL):大型语言模型如何通过上下文学习实现少样本高效推理[示例设计、ICL机制详解]

揭秘In-Context Learning(ICL):大型语言模型如何通过上下文学习实现少样本高效推理[示例设计、ICL机制详解]

自GPT-3首次提出了In-Context Learning(ICL)的概念而来,ICL目前已经变成了一种经典的LLMs使用方法。ICL,即In-Context Learning,是一种让大型语言模型(LLMs)通过少量标注样本在特定任务上进行学习的方法。这种方法的核心思想是,通过设计任务相关的指令形成提示模板,利用少量标注样本作为提示,引导模型在新的测试数据上生成预测结果。

  • ICL主要思路是:给出少量的标注样本,设计任务相关的指令形成提示模板,用于指导待测试样本生成相应的结果。

  • ICL的过程:并不涉及到梯度的更新,因为整个过程不属于fine-tuning范畴。而是将一些带有标签的样本拼接起来,作为prompt的一部分,引导模型在新的测试数据输入上生成预测结果。

  • ICL方法:表现大幅度超越了Zero-Shot-Learning,为少样本学习提供了新的研究思路。

1.ICL定义

1.1 形式化定义

给出少量任务相关的模型输入输出示例(demonstration),如$k$个示例$D_k={f(x_1,y_1),...,f(x_k,y_k)}$,其中$f(x_k,y_k)$是一个预定义的关于Prompt的函数(文本格式),用于将$k$个任务相关的示例,转换成自然语言Prompt。

给出任务定义$I$,示例$Dk$,以及一个新的输入$x{k+1}$,我们的目的是通过LLM生成输出$\hat{y}_k+1$。公式化为:

1.2 实例理解

以一个分类任务进行举例,从训练集中抽取了$k=3$个包含输入输出的实例,使用换行符"\n"来区分输入和输出。

在预测时,可以更换测试样本输入(绿色部分),并在末尾留出空间让LLM生成。

2.示例设计(Demonstration Design)

2.1 示例选择

ICL的性能,在不同的示例中,会有很大差异。即同一个测试样本,在选择不同的示例下,得到的结果可能会不一样。为了使得LLM生成更高准确率的结果,我们需要选取合适的示例。目前有两类方法:

(1) 启发式方法

《What Makes Good In-Context Examples for GPT-3?

我们很容易能有这样一个想法:如果demonstration与测试样本输入在语义上相近的话,是否效果会更好?本论文给出了肯定的答案。

作者使用RoBERTa-large模型作作为编码器,选取了其CLS embedding的输出向量作为训练样本的文本表征。使用K-近邻算法以及欧式距离方法,选取与当前test sentence语义最近的10个训练个样本,作为demonstration。

实验效果表明,该方法比随机抽取训练样本作为demonstration效果更好。

《Diverse demonstrations improve in-context compositional generalization》

用来挑选demostration的训练数据和测试数据有时候可能会存在较大的分布差异,这个时候很难通过KNN等基于相似方法来挑选合适的demostration。本论文从多样性的角度去挑选demostration,目的在于尽可能地覆盖所有可能的输出,提高模型在新场景的泛化能力。

具体做法是,在原有相似度的基础上,考虑不同demostration之间的差异性。当两个demostration高度语义相似时,剔除其中一个。

(2) LLM-based方法

除了启发式方法以外,还有研究者使用LLMs来直接生成demostrations。

《Learning To Retrieve Prompts for In-Context Learning》

作者认为demostrations的好坏,不应该由人来决定,而应该由模型来判定。

对于一条测试数据$(x,y)$,作者将训练集中每一个样本数据都当作示例$e$,将$(e,x)$输入模型,通过模型生成$y$的概率$Prob_{\hat g}(y|e,x)$,来评估当前示例的好坏。

为了缓解由于训练集过大而导致计算开销成本高的问题。作者使用了$BM25$、$SBERT$等方法,预先对所有训练集进行召回,筛选出候选示例集。再对其每一条示例进行评估,选取最高分的k条示例作为正例集,最低分k条作为负例集,使用对比学习的方法,训练retrever。同时生成一个针对输入编码的Utterance encoder和针对示例编码的prompt encoder。

基于训练好的retrever,结合Faiss相似度计算框架,找出输入input对应最佳的demostrations。

《Active Example Selection for In-Context Learning》

我们知道,主动学习的思路是从样本库中选择适合的样本,提供给标注者标注。

而示例选择问题与主动学习的思路有点类似,示例选择目标是选择适合的示例,提供给prompt,以使测试样本得到较高的准确率。

由于demostrations的可选空间,与样本库(一般是训练集)呈指数关系,要枚举所有的demostrations组合,并不现实。因此,作者将示例选择看作是一个序列决策问题,这样就可以基于马尔可夫决策过程(MDP),使用强化学习(RL)的方法去解决。

我们知道一个经典的MDP模型,有3个基本定义(状态state、动作action、奖励reward)。文章将state定义为当前时刻的demostration,即$(x_i,y_i)$,action定义为样本库中所有的样本和一个停止信号标识(┴),reward定义为LLMs利用state与当前action构成的demostrations,在验证集中的准确率。即,prompt是由state+action构造成的demostrations,加上验证集中的样本输入一起组成。通过对比验证集标签与LLMs输出,可计算准确率。

定义好MDP的各个关键部分后,作者基于off-policy的方式,使用CQL(Q-learning的一个变种,用于缓解Q-Learning对于Q值估计过高的问题),构造一个三层MLP层的Q网络,用于学习最优策略。

《Self-generated in-context learning: Leveraging auto-regressive language models as a demonstration generator》

前面提及的方法,都是从样本库中挑选出合适的demonstration,而本论文方法是利用LLMs自身的能力,生成合适的demonstration。目的是最小化对外部样本库的依赖。

整个过程分为两个阶段:

  • 1.借助预先设计的prompt,让LLMs生成k个合适的示例
  • 2.在原来输入的基础上,加入第一阶段生成的示例,让LLMs预测最终结果

实验结显示,当使用Self-generated的方式生成8个demonstration作为in-context sample,于从样本库中抽取5个demonstration作为in-context sample的效果相当。

2.2 示例格式

在完成demonstrations的选择后,下一步就是将demonstrations整合成一个自然语言Prompt。

《Cross-task generalization via natural language crowdsourcing instructions》

这篇论文提出了一个新的跨任务instruction数据集。他们使用总包的方式,按照规定的instruction格式,对多个开源数据集进行改造。

针对每一个promt,其格式包含:

  • title: 包含一个high-level的任务描述,以及其相关技能,如question generation,answer generation等
  • prompt: 单独的文本命令,一般出现在输入示例之前。
  • definition: 指令的补充内容,更加详细地描述指令的具体执行细节。
  • things to avoid: 包含模型应该避免的内容,或规则。
  • emphasis and caution: 强调在众包过程中,警告或反对的内容
  • positive examples: 提供一个类似系统期望的输入、输出例子,使得众包人员更好地理解任务。
  • negative examples:提供一个类似系统期望的输入、输出的负例,让众包人员尽量避免。
  • reason: 解释为什么例子是positive或negative。
  • suggestion: 包含一些建议,主要用于指导如何将负例改成正例。

模型在经过上述instruction数据集微调后,能在unseen样本上,达到较好的生成效果。在新样本推断时,将demonstrations加入到task instances即可。

《SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions》

本论文提出了一种半自动化self-instruction过程,使用少量人工标注的数据,生成大量能用于instruction的数据。并开源了一个基于GPT3的52K self-instruct数据集。

一般来说,instruction数据集,会包含两/三个部分:(指令、输入、输出)或(指令、输出)。如

本论文提出的方法包含几个步骤:

1.人工设计175个不同任务的启动任务池,且给每个任务编写一个instruction和一个实例。

2.使用LLMs生成新的指令。生成指令的prompt由6个人工编写的instruction和从模型生成结果中抽取2个instruction,按照指定模板公式组合后,输入模型,并输出一个新的指令

3.判断指令是否属于分类任务。由于分类任务和非分类任务用的prompt模板不同,故需要进行分开识别。分别从任务池中抽取分类instruction和非分类instruction,再加上新生成的指令,输入模型,模型输出是否为分类任务

4.生成实例。分为两种策略:

  • (1)先生成输入,在生成输出。适用于非分类任务。
  • (2)先生成输出,再生成输入。适用于分类任务,缓解生成结果单一化问题。

5.结果过滤。对于新生成的instruction,比较其与任务池中的instruction的ROUGE-L值,当小于0.7时才会加入任务池。(ROUGE-L越大,说明instruction越相似)

《Automatic chain of thought prompting in large language models》

LLMs通过生成中间推理步骤的方式可以做复杂任务推理。在prompt示例(demonstration)中引入这些推理步骤的方法称为chain-of-thought(CoT) prompting,即:思维链prompting。

传统的CoT分为两种范式:

1.Zero-Shot-CoT: 在LLMs中添加一个简单的prompt即可,如"Let's think step by step"。以促进在回答问题之前一步步地思考。

2.Manual-CoT: 加入多个由人工设计的prompt,包含问题、推理链和答案。

由于Zero-Shot-CoT方法存在不稳定性,而Manual-Cot方法需要大量人工成本投入。作者提出了一种基于Auto-CoT的方法,自动构建包含问题和推理链的说明样例(demonstrations)。

整个过程分了两个阶段:

1.question cluster: 目的是将数据集中的question划分到不同簇中。

  • 使用Sentence-Bert计算每个question的向量表示;
  • 使用k-means方法将question记性簇划分;
  • 最后对每个簇中的question,根据距离中心点距离,升序排序。

2.demostration sampling: 目的是从每个簇中选取一个代表性的question,基于LLMs,使用Zero-Shot-CoT生成推理链。

  • 对于每一个簇$i$里的每一个问题$q^{(i)}_j$,使用Zero-Shot-CoT的方法,将$[Q:q^{(i)}_j,A:[P]]$(其中$[P]$表示"Let's think step by step")输入到LLMs,LLMs生成该问题的推理链$r^{(i)}_j$和答案$a^{(i)}_j$;
  • 若问题$q^{(i)}_j$不超过60个tokens,且推理链$r^{(i)}_j$不超过5个推理步骤,则将问题+推理链+答案,加入到demostrations列表中:$[Q:q^{(i)}_j,A:r^{(i)}_j。a^{(i)}_j]$;

  • 遍历完所有簇,将得到k个demostrations,将其拼接上测试question,构造成新的Prompt,输入LLMs便可得到生成结果。

值得一提的是,Auto-CoT在多个开源推理任务的数据集上,效果与Manual-CoT相当,甚至某些任务表现得更好。

《Least-to-Most Prompting Enables Complex Reasoning in Large Language Models》

虽然CoT在很多自然语言推理任务上效果显著,但是当问题比prompt里的demostrations更难时,LLMs的表现往往会很糟糕。于是作者提出了Least-to-Most Prompting的策略思想,将问题分解成一个个小问题,结合使用COT,那么模型就能把问题解出来了。

整个过程分为两个阶段:

1.将原问题分解为一系列子问题。

  • 要求LLMs根据输入和提示"To solve xx, we need to solve xx",生成子问题。

2.依次解决子问题,最后解决原始问题。

  • 将原始context,加上阶段1中生成的子问题进行组合,通过LLMs依次生成每个子问题的思维链和答案。
  • 当生成完所有子问题的答案后,再拼接上原始问题,通过LLMs输出生成结果。

2.3 示例排序

我们知道,demostrations一般是由多个示例组成,而不同的示例排序会不会对模型在新样本中的表现产生影响?

论文《Calibrate before use: Improving few-shot performance of language models》给出了肯定的答案。作者指出,在一个正常的prompt+demostrations+新样本的输入中,LLMs会更加倾向于将新样本对应的标签,预测为demostrations最后一个示例对应的标签,成为Recency Bias。因此demostrations的排序,对LLMs的表现也是有相当大的影响。

2.3.1 启发式方法

《What Makes Good In-Context Examples for GPT-3?》

我们在选择那一节有介绍过该论文,思路是使用k-nearest neighbors+欧式距离的方法,根据与测试样本的相似度,对demostrations进行排序,与测试样本越相似,排序越后。

2.3.2 基于熵的方法

《Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity》

作者提出了一种基于Global Entropy和Loacl Entropy的方法对demostrations进行排序,取得了比随机排序更优的效果。

该过程分为两个步骤:

1.生成用来验证的无标注数据集。

  • 将demostrations按照不同的顺序排列,输入LLMs,让其生成不同带标签的伪数据。

2.确定评价指标来评估demostrations的展示顺序优劣。

  • 作者观察到大多数使模型失效的demostrations顺序,会让模型的标签分布相对极端,从而导致标签分布的熵值较低。
  • 设计了两种基于熵的指标(Global Entropy和Loacl Entropy),来评估当前demostrations排序的结果质量。

3.ICL机制

3.1 预训练机制如何影响ICL?

  1. 知识积累:预训练阶段,模型会接触到大量的无标注或弱标注数据,从而学习到丰富的语言知识、常识和上下文信息。这些积累的知识和信息为ICL提供了坚实的基础,使得模型能够利用上下文信息做出更准确的预测。
  2. 泛化能力:预训练过程使模型具备了较强的泛化能力,即模型能够将在预训练阶段学到的知识和技能应用到新的、未见过的任务和数据上。这种泛化能力是ICL得以实现的关键,因为ICL正是利用了模型在预训练阶段学到的知识来进行少量样本学习。
  3. 参数初始化:预训练为模型的参数提供了良好的初始化值。在ICL过程中,模型不需要对参数进行大量的更新,而只需要根据少量标注样本进行微调,即可快速适应新的任务。这种快速的适应能力是ICL的一个重要优势。

3.2 LLMs怎样表现出ICL能力?

  1. 利用上下文信息:LLMs能够充分利用输入序列中的上下文信息来做出决策。例如,在文本分类任务中,模型可以通过分析整个句子的语境来判断句子的情感倾向。
  2. 设计提示模板:对于特定的任务,LLMs可以通过设计任务相关的指令形成提示模板。这些提示模板可以包含少量标注样本,用于指导模型生成预测结果。
  3. 少样本学习:LLMs在只有少量标注数据可用时仍能表现出良好的性能。通过利用预训练阶段学到的知识和泛化能力,模型可以在少量样本上快速学习并适应新的任务。
  4. 性能提升:实验表明,ICL方法的表现大幅度超越了Zero-Shot-Learning,为少样本学习提供了新的研究思路。在多个自然语言处理任务上,采用ICL方法的LLMs相比传统的微调方法取得了更好的性能。

4.总结

对于In-Context Learning而言,demonstrations的选择、格式、以及排序,都会对测试样本的效果产生影响。在实际应用时,我们可以借鉴前人的经验,根据自己的场景选择适合的ICL方法。

5.Reference

What Makes Good In-Context Examples for GPT-3?

Diverse demonstrations improve in-context compositional generalization

Learning To Retrieve Prompts for In-Context Learning

Active Example Selection for In-Context Learning

Self-generated in-context learning: Leveraging auto-regressive language models as a demonstration generator

Cross-task generalization via natural language crowdsourcing instructions

SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions

Automatic chain of thought prompting in large language models

Least-to-Most Prompting Enables Complex Reasoning in Large Language Models

Calibrate before use: Improving few-shot performance of language models

Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity

相关文章
|
1月前
|
机器学习/深度学习
大模型开发:解释正则化及其在机器学习中的作用。
正则化是防止机器学习过拟合的技术,通过限制模型参数和控制复杂度避免过拟合。它包含L1和L2正则化,前者产生稀疏解,后者适度缩小参数。选择合适的正则化方法和强度对模型性能关键,常用交叉验证评估。
|
15天前
|
机器学习/深度学习 存储 编解码
Tiny Time Mixers (TTM)轻量级时间序列基础模型:无需注意力机制,并且在零样本预测方面表现出色
IBM研究人员提出Tiny Time Mixers (TTM),这是一个轻量级、基于mlp的TS模型,参数量小于1M,在M4数据集上表现优于大型SOTA模型,且具备优秀的零样本预测能力。TTM无注意力机制,利用TSMixer进行多级建模,自适应补丁和频率前缀调整等创新特性提升性能。预训练和微调阶段各有独特设计,预训练仅用单变量序列,微调时学习多变量依赖。TTM在某些任务中证明了小模型的优越性,且模型已开源。
68 1
|
27天前
|
缓存 人工智能 数据可视化
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
|
1月前
|
存储 机器学习/深度学习 人工智能
论文介绍:InfLLM——揭示大型语言模型在无需训练的情况下处理极长序列的内在能力
【5月更文挑战第18天】InfLLM是一种新方法,无需额外训练即可增强大型语言模型处理极长序列的能力。通过使用记忆单元存储长序列的远距离上下文,InfLLM能更准确地捕捉长距离依赖,提高对长文本理解。实验表明,InfLLM使预训练在短序列上的模型在处理极长序列时表现媲美甚至超过专门训练的模型。尽管有挑战,如动态上下文分割和记忆单元效率,InfLLM为长序列处理提供了有效且未经训练的解决方案。论文链接:https://arxiv.org/abs/2402.04617
41 3
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
让大模型不再巨无霸,这是一份最新的大模型参数高效微调综述
【5月更文挑战第12天】最新综述探讨了大模型参数高效微调,旨在减少计算成本、增强泛化能力和灵活性。方法包括Additive、Selective、Reparameterized和Hybrid PEFT,已应用于NLP、CV和多模态学习。尽管取得进展,仍需解决泛化、效率和可解释性问题。未来研究将关注多任务学习、强化学习和神经架构搜索。论文链接:https://arxiv.org/pdf/2403.14608.pdf
103 2
|
1月前
|
机器学习/深度学习 自然语言处理 计算机视觉
【大模型】小样本学习的概念及其在微调 LLM 中的应用
【5月更文挑战第5天】【大模型】小样本学习的概念及其在微调 LLM 中的应用
|
1月前
|
机器学习/深度学习 自然语言处理 并行计算
【大模型】解释自我注意力的概念及其在LLM表现中的作用
【5月更文挑战第6天】【大模型】解释自我注意力的概念及其在LLM表现中的作用
|
1月前
|
数据采集
【大模型】大语言模型训练数据中的偏差概念及其可能的影响?
【5月更文挑战第5天】【大模型】大语言模型训练数据中的偏差概念及其可能的影响?
|
1月前
|
机器学习/深度学习
大模型开发: 解释批量归一化以及它在训练深度网络中的好处。
批量归一化(BN)是2015年提出的加速深度学习训练的技术,旨在解决内部协变量偏移、梯度消失/爆炸等问题。BN通过在每层神经网络的小批量数据上计算均值和方差,进行标准化处理,并添加可学习的γ和β参数,保持网络表达能力。这样能加速训练,降低超参数敏感性,对抗过拟合,简化初始化。BN通过稳定中间层输入分布,提升了模型训练效率和性能。
92 3
|
1月前
|
存储 机器学习/深度学习 人工智能
基于Megatron-Core的稀疏大模型训练工具:阿里云MoE大模型最佳实践
随着大模型技术的不断发展,模型结构和参数量级快速演化。大模型技术的应用层出不穷。大模型展现惊人效果,但训练和推理成本高,一直是巨大挑战。模型稀疏化能降低计算和存储消耗。近期以Mixtral为代表的MoE(多专家混合)大模型证明了稀疏MoE技术能大幅降低计算量、提升推理速度,模型效果甚至超过同规模稠密模型。阿里云PAI和NVIDIA团队深入合作,基于Megatron-Core MoE框架,解决了MoE大模型训练落地时会遇到的可拓展性、易用性、功能性以及收敛精度等核心问题,在下游任务上取得了很好的模型效果。