【YOLOv8改进】Shape-IoU:考虑边框形状与尺度的指标(论文笔记+引入代码)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: YOLO目标检测专栏探讨了边框回归损失的创新方法,强调了目标形状和尺度对结果的影响。提出的新方法Shape-IoU关注边框自身属性,通过聚焦形状和尺度提高回归精度。实验显示,该方法提升了检测效果,超越现有技术,在多个任务中达到SOTA。论文和代码已公开。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

介绍

image-20240130102437884

摘要

​ 作为检测器定位分支的重要组成,边框回归损失在目标检测任务中发挥巨大作用。现有的边框回归方法,通常考虑了GT框与预测框之间的几何关系,通过使用边框间的相对位置与相对形状等计算损失,而忽略了边框其自身的形状与尺度等固有属性对边框回归的影响。为了弥补现有研究的不足,本文提出聚焦边框自身形状与尺度的边框回归方法。首先我们对边框回归特性进行分析,得出边框自身形状因素与尺度因素会对回归结果产生影响。接着基于以上结论我们,我们提出了Shape-IoU方法,其能够通过聚焦边框自身形状与自身尺度计算损失,从而使得边框回归更为精确。最后我们通过大量的对比实验来验证本文方法,实验结果表明本文方法能够有效提升检测效果且优于现有方法,在不同的检测任务中达到了sota.

创新点

  1. 本研究对边界框回归的特性进行了深入分析,并得出结论:在边界框回归过程中,回归样本的形状与尺度因素对回归结果有显著影响。

  2. 基于对现有边界框回归损失函数的考量,特别是考虑到回归样本自身形状与尺度对边界框回归的影响,提出了Shape-IoU损失函数。对于小目标检测任务,进一步提出了Shape-Dot-Distance和Shape-NWD损失函数。

  3. 采用当前最先进的单阶段检测器,在不同的检测任务上进行了一系列比较实验。实验结果证实,该方法在检测效果上优于现有方法,并达到了行业领先水平(State of the Art,SOTA)。

方法

1.边框回归特性分析

如图所示,图a与图b中,边框回归样本A与B的基准框(GT框)尺度相同,样本C与D的基准框尺度亦相同。样本A与D的基准框形状相同,样本B与C的基准框形状相同。样本C与D的边框尺度大于样本A与B。在图a中,所有边框回归样本的偏移量(deviation)相同,形状偏移量(shape-deviation)为0。图b中,所有边框回归样本的形状偏移量相同,偏移量为0。观察结果如下:

- 图a中,样本A与B的偏移量相同,但它们的IoU值存在差异。
- 图a中,样本C与D的偏移量相同,但它们的IoU值存在差异,且与样本A与B相比,其IoU值差异较小。
- 图b中,样本A与B的形状偏移量相同,但它们的IoU值存在差异。
- 图b中,样本C与D的形状偏移量相同,但它们的IoU值存在差异,且与样本A与B相比,IoU值差异较小。

分析图a中样本A与B的IoU值差异可知,由于GT框形状不同(即长边和短边方向的偏差),对IoU值的影响各异。对于小尺度边框,其IoU值变化更敏感,GT框形状对IoU值的影响更显著。此外,图b中从形状偏移量角度分析边框回归,发现回归样本的GT框形状在回归过程中影响其IoU值。

基于以上分析,可以得出以下结论:

  • (1)在非正方形GT框中,即存在长边与短边的情况下,假设偏移量与形状偏移量均不为0,边框形状与尺度的差异会导致IoU值存在显著差异。
  • (2)在相同尺度的边框回归样本中,当偏移量与形状偏移量均不为0时,边框形状会显著影响IoU值,特别是沿边框短边方向的偏移。
  • (3)在形状相同的边框回归样本中,相较于大尺度样本,小尺度样本的IoU值更易受GT框形状影响。

2.Shape-IoU

其中,scale为尺度因子,与数据集中目标的尺度相关;ww与hh分别为水平方向与竖直方向的权重系数,与GT框的形状相关。对应的边框回归损失函数如下:

文章链接

论文地址:论文地址

代码地址:代码地址

原文作者CSDN : https://blog.csdn.net/qq_45911380/article/details/135330376

视频讲解

yolov8引入代码

def shape_iou(box1, box2, xywh=True, scale=0, eps=1e-7):
    (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
    w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
    b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
    b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps

    # IoU
    iou = inter / union

    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance  
    ww = 2 * torch.pow(w2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))
    hh = 2 * torch.pow(h2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))
    cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex width
    ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
    c2 = cw ** 2 + ch ** 2 + eps                            # convex diagonal squared
    center_distance_x = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2) / 4
    center_distance_y = ((b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4
    center_distance = hh * center_distance_x + ww * center_distance_y
    distance = center_distance / c2

    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    
    omiga_w = hh * torch.abs(w1 - w2) / torch.max(w1, w2)
    omiga_h = ww * torch.abs(h1 - h2) / torch.max(h1, h2)
    shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)

    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU    #Shape-IoU
    iou = iou - distance - 0.5 * ( shape_cost)
    return iou  # IoU

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/135927712

相关文章
|
算法 计算机视觉
YOLOv8改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
YOLOv8改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
799 2
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
2774 0
|
8月前
|
计算机视觉
YOLOv11改进策略【损失函数篇】| Shape-IoU:考虑边界框形状和尺度的更精确度量
YOLOv11改进策略【损失函数篇】| Shape-IoU:考虑边界框形状和尺度的更精确度量
852 4
|
计算机视觉
【YOLOv10改进-损失函数】Shape-IoU:考虑边框形状与尺度的指标
YOLO目标检测专栏探讨了边框回归损失的创新方法,强调了目标形状和尺度对结果的影响。提出的新方法Shape-IoU关注边框自身属性,通过聚焦形状和尺度提高回归精度。实验显示,该方法提升了检测效果,超越现有技术,在多个任务中达到SOTA。论文和代码已公开。
|
机器学习/深度学习
YOLOv8改进 | 损失函数篇 | 更加聚焦的边界框损失Focaler-IoU、InnerFocalerIoU(二次创新)
YOLOv8改进 | 损失函数篇 | 更加聚焦的边界框损失Focaler-IoU、InnerFocalerIoU(二次创新)
1461 0
|
8月前
|
Serverless 计算机视觉
YOLOv11改进策略【小目标改进】| Shape-NWD:融合改进,结合Shape-IoU和NWD 更好地适应小目标特性
YOLOv11改进策略【小目标改进】| Shape-NWD:融合改进,结合Shape-IoU和NWD 更好地适应小目标特性
1299 9
|
机器学习/深度学习 编解码 测试技术
【YOLOv10改进-注意力机制】LSKNet(Large Selective Kernel Network ):空间选择注意力
YOLOv10专栏聚焦遥感目标检测,提出LSKNet,首个探索大型选择性核的模型。LSKNet利用LSKblock Attention动态调整感受野,处理不同目标的上下文。创新点还包括极化滤波和增强技术,提升信息保留和非线性输出。在HRSC2016等遥感基准上取得SOTA性能。LSKNet代码展示其网络结构,包括多阶段模块和注意力机制。详细配置和任务说明见相关链接。
|
11月前
|
机器学习/深度学习 编解码 Java
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
18506 0
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进 - 特征融合NECK】 GIRAFFEDET之GFPN :广义特征金字塔网络,高效地融合多尺度特征
YOLOv8专栏探讨了目标检测的创新改进,提出了GiraffeDet,一种轻量级主干和深度颈部模块结合的高效检测网络。GiraffeDet使用S2D-chain和GFPN,优化多尺度信息交换,提升检测性能。代码和论文可在相关链接找到。GFPN通过跳跃和跨尺度连接增强信息融合。文章还展示了核心组件如SPPV4、Focus和CSPStage的代码实现。