YOLOv5改进 | 损失函数篇 | 更加聚焦的边界框损失Focaler-IoU | 二次创新Inner-FocalerIoU

简介: YOLOv5改进 | 损失函数篇 | 更加聚焦的边界框损失Focaler-IoU | 二次创新Inner-FocalerIoU

一、本文介绍

本文给大家带来的改进机制是更加聚焦的边界框损失Focaler-IoU以及我二次创新的InnerFocalerIoU同时本文的内容支持现阶段的百分之九十以上的IoU,比如Focaler-IoU、Focaler-MpdIoU、Innner-Focaler-MpdIoU、Inner-FocalerIoU包含非常全的损失函数,边界框的损失函数只看这一篇就够了。

欢迎大家订阅我的专栏一起学习YOLO!


image.png

专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、Focaler-IoU原理

image.png


Focaler-IoU是一种在对象检测中用于边界框回归的损失函数。这种方法的基本原理可以从以下几个方面来理解:

1. 专注于不同的回归样本:Focaler-IoU 通过对不同的回归样本进行聚焦,来提高在不同检测任务中的探测器性能。这是通过线性区间映射来重构IoU损失,实现对不同样本的关注。

2. 解决困难和简单样本分布问题:它分析并考虑了困难样本和简单样本在边界框回归中的分布对回归结果的影响,这是传统IoU损失函数中常被忽视的一个方面。

3. 改进现有的边界框回归方法:Focaler-IoU 通过其特有的方法来弥补现有边界框回归方法的不足,从而在不同的检测任务中进一步提高检测性能。

image.png


上面这个公式定义了Focaler-IoU,它根据交并比(IoU)的值来调整损失。

当IoU小于一个下限阈值 d 时,损失为0;

当IoU大于一个上限阈值 u 时,损失为1;

而当IoU处于 d 和 u 之间时,损失是一个根据IoU值线性递增的函数。

这样的设计允许损失函数在一定区间内对IoU值敏感,从而能够更专注于那些预测边界框与真实边界框重叠度中等的样本,即既不是太难也不是太容易的样本。这有助于模型更好地学习从中等困难的样本中提取特征,而不是仅仅专注于最容易或最困难的样本。


目录
相关文章
|
算法 固态存储 计算机视觉
Focaler-IoU开源 | 高于SIoU+关注困难样本,让YOLOv5再涨1.9%,YOLOv8再涨点0.3%
Focaler-IoU开源 | 高于SIoU+关注困难样本,让YOLOv5再涨1.9%,YOLOv8再涨点0.3%
537 0
|
机器学习/深度学习 编解码 文件存储
YOLOv8改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
YOLOv8改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
1634 1
|
机器学习/深度学习
YOLOv8改进 | 损失函数篇 | 更加聚焦的边界框损失Focaler-IoU、InnerFocalerIoU(二次创新)
YOLOv8改进 | 损失函数篇 | 更加聚焦的边界框损失Focaler-IoU、InnerFocalerIoU(二次创新)
1642 0
|
11月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
554 13
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
|
11月前
|
机器学习/深度学习 存储 TensorFlow
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
2652 11
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
|
11月前
YOLOv11改进策略【损失函数篇】| 通过辅助边界框计算IoU提升检测效果(Inner_GIoU、Inner_DIoU、Inner_CIoU、Inner_EIoU、Inner_SIoU)
YOLOv11改进策略【损失函数篇】| 通过辅助边界框计算IoU提升检测效果(Inner_GIoU、Inner_DIoU、Inner_CIoU、Inner_EIoU、Inner_SIoU)
1225 4
YOLOv11改进策略【损失函数篇】| 通过辅助边界框计算IoU提升检测效果(Inner_GIoU、Inner_DIoU、Inner_CIoU、Inner_EIoU、Inner_SIoU)
|
11月前
|
人工智能
YOLOv11改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)
YOLOv11改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)
2058 4
|
11月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
1134 0
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
|
11月前
|
人工智能
RT-DETR改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)
RT-DETR改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)
330 1
|
11月前
|
关系型数据库 决策智能
YOLOv11改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题
YOLOv11改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题
1656 6