SPSS modeler利用类神经网络对茅台股价涨跌幅度进行预测

简介: SPSS modeler利用类神经网络对茅台股价涨跌幅度进行预测

数据变得越来越重要,其核心应用“预测”也成为各个行业以及产业变革的重要力量点击文末“阅读原文”了解更多

相关视频

image.png

image.png

image.png

对于股市来说,用人工智能来对股价进行预测成为量化投资的一个重要手段。本项目帮助客户运用powerBI获取网易财经上茅台2020年股票数据、并用SPSSmodeler 的类神经网络模型对第二天股价涨跌幅度进行预测。

数据收集和处理:

数据对于机器学习十分重要。没有合适的数据,就无法训练机器学习模型,运用powerBI上的数据爬取功能,获取网易财经上贵州茅台2020年全年数据、并进行数据清洗。

1、根据网页结构,构建参数和自定义函数

6ea8b4b150d420875a8317d18ba0492e.png

8ba8293abc1607690676f6095ba25de1.png

2、用URL高级功能获取茅台2020年数据

2e2af0382555040b9e0636c25fe97fa7.png

3 、用 powerQuery 编辑器对日期、涨跌幅等数据进行清洗和加工,得到规范的数据。

SPSSmodeler 进行数据建模

载入数据,进行数据分区,随机选取 80% 数据训练模型、 20% 的数据进行测试。

fe0495893268eab58caf6c65e3418360.png

构建增强型的类神经网络模型,对第二天股票涨跌幅度进行预测

0a998e0015ce2ebbd0b77017e9f877fc.png

点击标题查阅往期内容


spss modeler用决策树神经网络预测ST的股票

34db37e4b64fbda0a34f98a31e36ec18.png

对模型进行分析:其标准差为 0.996 、线性相关性为 0.806 ,模型基本符合要求。

93eebbbb3e240f037e145a180619edbe.png

修改模型参数和抽样比等对模型进行优化

a8b0eea3a06ce7b6c52920c0b83eda1d.png

可以看出,第二天股价的预测值和真实值趋势基本保持一致,但是预测时间越长其预测的准确度越低。

对于股票预测,模型的准确度与数据量的大小、K线关键技术指标、模型的选择有很大的关系。通过不断地改进模型和方法,股票的走势是可以大致进行的预测的。

相关文章
|
21天前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
49 3
|
5月前
|
网络安全 数据安全/隐私保护 网络架构
ABCDE类网络的划分及保留网段
ABCDE类网络的划分及保留网段
657 7
|
2月前
|
网络协议 算法 网络安全
CCF推荐A类会议和期刊总结(计算机网络领域)
本文总结了中国计算机学会(CCF)推荐的计算机网络领域A类会议和期刊,这些会议和期刊代表了该领域的顶尖水平,汇聚了全球顶尖研究成果并引领前沿发展。A类期刊包括IEEE Journal on Selected Areas in Communications、IEEE Transactions on Mobile Computing等;A类会议包括SIGCOMM、MobiCom等。关注这些平台有助于研究人员紧跟技术前沿。
CCF推荐A类会议和期刊总结(计算机网络领域)
|
2月前
|
传感器 算法 物联网
CCF推荐C类会议和期刊总结:(计算机网络领域)
该文档总结了中国计算机学会(CCF)推荐的计算机网络领域C类会议和期刊,详细列出了各类会议和期刊的全称、出版社、dblp文献网址及研究领域,为研究者提供了广泛的学术交流资源和平台。
CCF推荐C类会议和期刊总结:(计算机网络领域)
|
2月前
|
传感器 网络协议
CCF推荐B类会议和期刊总结:(计算机网络领域)
中国计算机学会(CCF)推荐的B类会议和期刊在计算机网络领域具有较高水平。本文总结了所有B类会议和期刊的详细信息,包括全称、出版社、dblp文献网址及研究领域,涵盖传感器网络、移动网络、网络协议等多个方向,为学者提供重要学术交流平台。
CCF推荐B类会议和期刊总结:(计算机网络领域)
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
Nature子刊:基于内生复杂性,自动化所新类脑网络构筑人工智能与神经科科学的桥梁
【9月更文挑战第11天】中国科学院自动化研究所的研究人员提出了一种基于内生复杂性的新型类脑网络模型,通过模拟人脑内部神经元间的复杂互动来提升AI系统的智能与适应性。此模型利用图神经网络(GNN)并设计分层图结构对应人脑不同功能区,引入自适应机制根据输入数据调整结构。实验表明,此模型在图像分类及自然语言处理等任务中表现出显著提升的性能,并且处理复杂数据时更具备适应性和鲁棒性。论文链接:https://www.nature.com/articles/s43588-024-00674-9。
55 7
|
6月前
|
机器学习/深度学习 算法 搜索推荐
SPSS大学生网络购物行为研究:因子分析、主成分、聚类、交叉表和卡方检验
SPSS大学生网络购物行为研究:因子分析、主成分、聚类、交叉表和卡方检验
|
6月前
|
JavaScript Java 测试技术
Java项目基于ssm+vue.js的网络类课程思政学习系统附带文章和源代码设计说明文档ppt
Java项目基于ssm+vue.js的网络类课程思政学习系统附带文章和源代码设计说明文档ppt
44 0
|
6月前
|
JavaScript Java 测试技术
基于SpringBoot+Vue+uniapp的网络类课程思政学习系统的详细设计和实现(源码+lw+部署文档+讲解等)
基于SpringBoot+Vue+uniapp的网络类课程思政学习系统的详细设计和实现(源码+lw+部署文档+讲解等)

热门文章

最新文章