Nature子刊:基于内生复杂性,自动化所新类脑网络构筑人工智能与神经科科学的桥梁

简介: 【9月更文挑战第11天】中国科学院自动化研究所的研究人员提出了一种基于内生复杂性的新型类脑网络模型,通过模拟人脑内部神经元间的复杂互动来提升AI系统的智能与适应性。此模型利用图神经网络(GNN)并设计分层图结构对应人脑不同功能区,引入自适应机制根据输入数据调整结构。实验表明,此模型在图像分类及自然语言处理等任务中表现出显著提升的性能,并且处理复杂数据时更具备适应性和鲁棒性。论文链接:https://www.nature.com/articles/s43588-024-00674-9。

近年来,人工智能(AI)和神经科学之间的交叉融合引起了广泛关注。随着对人脑工作机制的深入理解,科学家们开始尝试将神经科学的原理应用于AI系统的设计和优化中。最近,中国科学院自动化研究所的研究人员提出了一种基于内生复杂性的新类脑网络模型,为AI和神经科学之间的桥梁构建提供了新的思路。

该研究团队由Linxuan He领导,他们提出了一种名为"Network model with internal complexity"(内生复杂性网络模型)的新模型。该模型旨在通过模拟人脑的内生复杂性,提高AI系统的智能水平和适应性。

内生复杂性是指系统内部各要素之间的相互作用和关联所导致的复杂性。在人脑中,神经元之间的连接和相互作用形成了复杂的网络结构,使得人脑能够处理和理解复杂的信息。研究人员试图将这种内生复杂性引入到AI系统中,以提高其智能水平。

为了实现这一目标,研究人员提出了一种基于图神经网络(GNN)的新模型。GNN是一种能够处理图结构数据的神经网络模型,可以模拟神经元之间的连接和相互作用。研究人员通过设计特殊的图结构,使得GNN能够模拟人脑的内生复杂性。

具体而言,研究人员提出了一种分层图结构,其中每个层次都对应着人脑的不同功能区域。通过在层次之间建立连接,研究人员模拟了人脑中不同功能区域之间的相互作用。此外,研究人员还引入了一种自适应机制,使得模型能够根据输入数据的复杂性自适应地调整其结构。

为了验证该模型的有效性,研究人员在多个数据集上进行了实验。结果显示,该模型在图像分类、自然语言处理等任务上取得了显著的性能提升。此外,研究人员还发现,该模型在处理复杂数据时具有更好的适应性和鲁棒性。

然而,该研究也存在一些局限性。首先,由于人脑的复杂性极高,目前的模型还无法完全模拟人脑的所有特征。其次,由于模型的复杂性较高,其计算成本和训练难度也较大。因此,在实际应用中,还需要进一步优化和改进。

尽管如此,该研究仍然为AI和神经科学之间的交叉融合提供了新的思路和方法。通过模拟人脑的内生复杂性,研究人员有望开发出更加智能和适应性强的AI系统。同时,该研究也为理解人脑的工作机制提供了新的视角和工具。

论文链接:https://www.nature.com/articles/s43588-024-00674-9

目录
相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
111 55
|
2月前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
69 3
|
2月前
|
机器学习/深度学习 人工智能 编解码
探索生成对抗网络(GANs):人工智能领域的革新力量
【10月更文挑战第14天】探索生成对抗网络(GANs):人工智能领域的革新力量
87 1
|
3月前
|
存储 安全 网络安全
云计算与网络安全:守护数据,构筑未来
在当今的信息化时代,云计算已成为推动技术革新的重要力量。然而,随之而来的网络安全问题也日益凸显。本文从云服务、网络安全和信息安全等技术领域展开,探讨了云计算在为生活带来便捷的同时,如何通过技术创新和策略实施来确保网络环境的安全性和数据的保密性。
|
15天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
93 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
安全 算法 测试技术
网络防线的构筑者:探索网络安全漏洞与加密技术
【10月更文挑战第31天】在数字时代的浪潮中,信息安全成为我们不可忽视的盾牌。本文将深入浅出地探讨网络安全的核心问题——安全漏洞与加密技术,并强调提升个人和组织的安全意识的重要性。我们将从基础概念出发,逐步深入到防御策略、加密算法,最终聚焦于如何通过教育和实践来提高整个社会的安全防范意识。文章旨在为非专业读者提供一扇了解网络安全世界的窗口,同时为专业人士提供实用的知识分享和思考启发。
|
3月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
142 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
85 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
28天前
|
网络协议 算法 数据库
OSPF 与 BGP 的互操作性:构建复杂网络的通信桥梁
OSPF 与 BGP 的互操作性:构建复杂网络的通信桥梁
39 0
|
2月前
|
网络架构
直通和交叉电缆:网络连接的桥梁
【10月更文挑战第15天】
57 5