Nature子刊:基于内生复杂性,自动化所新类脑网络构筑人工智能与神经科科学的桥梁

简介: 【9月更文挑战第11天】中国科学院自动化研究所的研究人员提出了一种基于内生复杂性的新型类脑网络模型,通过模拟人脑内部神经元间的复杂互动来提升AI系统的智能与适应性。此模型利用图神经网络(GNN)并设计分层图结构对应人脑不同功能区,引入自适应机制根据输入数据调整结构。实验表明,此模型在图像分类及自然语言处理等任务中表现出显著提升的性能,并且处理复杂数据时更具备适应性和鲁棒性。论文链接:https://www.nature.com/articles/s43588-024-00674-9。

近年来,人工智能(AI)和神经科学之间的交叉融合引起了广泛关注。随着对人脑工作机制的深入理解,科学家们开始尝试将神经科学的原理应用于AI系统的设计和优化中。最近,中国科学院自动化研究所的研究人员提出了一种基于内生复杂性的新类脑网络模型,为AI和神经科学之间的桥梁构建提供了新的思路。

该研究团队由Linxuan He领导,他们提出了一种名为"Network model with internal complexity"(内生复杂性网络模型)的新模型。该模型旨在通过模拟人脑的内生复杂性,提高AI系统的智能水平和适应性。

内生复杂性是指系统内部各要素之间的相互作用和关联所导致的复杂性。在人脑中,神经元之间的连接和相互作用形成了复杂的网络结构,使得人脑能够处理和理解复杂的信息。研究人员试图将这种内生复杂性引入到AI系统中,以提高其智能水平。

为了实现这一目标,研究人员提出了一种基于图神经网络(GNN)的新模型。GNN是一种能够处理图结构数据的神经网络模型,可以模拟神经元之间的连接和相互作用。研究人员通过设计特殊的图结构,使得GNN能够模拟人脑的内生复杂性。

具体而言,研究人员提出了一种分层图结构,其中每个层次都对应着人脑的不同功能区域。通过在层次之间建立连接,研究人员模拟了人脑中不同功能区域之间的相互作用。此外,研究人员还引入了一种自适应机制,使得模型能够根据输入数据的复杂性自适应地调整其结构。

为了验证该模型的有效性,研究人员在多个数据集上进行了实验。结果显示,该模型在图像分类、自然语言处理等任务上取得了显著的性能提升。此外,研究人员还发现,该模型在处理复杂数据时具有更好的适应性和鲁棒性。

然而,该研究也存在一些局限性。首先,由于人脑的复杂性极高,目前的模型还无法完全模拟人脑的所有特征。其次,由于模型的复杂性较高,其计算成本和训练难度也较大。因此,在实际应用中,还需要进一步优化和改进。

尽管如此,该研究仍然为AI和神经科学之间的交叉融合提供了新的思路和方法。通过模拟人脑的内生复杂性,研究人员有望开发出更加智能和适应性强的AI系统。同时,该研究也为理解人脑的工作机制提供了新的视角和工具。

论文链接:https://www.nature.com/articles/s43588-024-00674-9

目录
相关文章
|
25天前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
58 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
15天前
|
存储 安全 网络安全
云计算与网络安全:守护数据,构筑未来
在当今的信息化时代,云计算已成为推动技术革新的重要力量。然而,随之而来的网络安全问题也日益凸显。本文从云服务、网络安全和信息安全等技术领域展开,探讨了云计算在为生活带来便捷的同时,如何通过技术创新和策略实施来确保网络环境的安全性和数据的保密性。
|
24天前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
79 21
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
25天前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
73 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
24天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
51 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
20天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
45 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
10天前
|
安全 算法 网络安全
网络安全的盾牌:从漏洞到加密,构筑信息安全长城
【9月更文挑战第34天】在数字时代的浪潮中,网络安全成为保护个人和组织数据不受侵犯的关键。本文将深入探讨网络安全中的漏洞发现、利用与防范,介绍加密技术的原理与应用,并强调培养安全意识的重要性。我们将通过实际代码示例,揭示网络攻防的复杂性,并提供实用的防护策略,旨在提升读者对网络安全的认识和应对能力。
47 10
|
3天前
|
机器学习/深度学习 人工智能 安全
网络安全中的人工智能
网络安全中的人工智能
14 1
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习还不如浅层网络?RL教父Sutton持续反向传播算法登Nature
【9月更文挑战第24天】近年来,深度学习在人工智能领域取得巨大成功,但在连续学习任务中面临“损失可塑性”问题,尤其在深度强化学习中更为突出。加拿大阿尔伯塔大学的研究人员提出了一种名为“持续反向传播”的算法,通过选择性地重新初始化网络中的低效用单元,保持模型的可塑性。该算法通过评估每个连接和权重的贡献效用来决定是否重新初始化隐藏单元,并引入成熟度阈值保护新单元。实验表明,该算法能显著提升连续学习任务的表现,尤其在深度强化学习领域效果明显。然而,算法也存在计算复杂性和成熟度阈值设置等问题。
35 2
|
20天前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
38 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台