Azure 机器学习 - 使用Python SDK训练模型

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介: Azure 机器学习 - 使用Python SDK训练模型

了解如何用 SDK v1 将 Azure 计算资源附加到 Azure 机器学习工作区。 然后,可以将这些资源用作机器学习任务中的训练和推理计算目标


一、环境准备

  • Azure 机器学习工作区。 有关详细信息,请参阅创建工作区资源。
  • 机器学习服务的 Azure CLI 扩展、Azure 机器学习 Python SDK 或 Azure 机器学习 Visual Studio Code 扩展。

二、工作区限制

  • 请勿在工作区中为同一计算创建多个同步附件。 例如,使用两个不同的名称将一个 Azure Kubernetes 服务群集附加到工作区。 每个新附件都会破坏先前存在的附件。
    如果要重新附加计算目标来实现某个目的(例如,更改 TLS 或其他群集配置设置),则必须先删除现有附件。

三、什么是计算目标?

使用 Azure 机器学习,可在不同的资源或环境(统称为计算目标)中训练模型。 计算目标可以是本地计算机,也可以是云资源,例如 Azure 机器学习计算、Azure HDInsight 或远程虚拟机。 还可以使用计算目标进行模型部署,如部署模型的位置和方式中所述。


四、本地计算机

使用本地计算机进行训练时,无需创建计算目标。 只需从本地计算机提交训练运行。

使用本地计算机进行推理时,必须安装 Docker。 若要执行部署,请使用 LocalWebservice.deploy_configuration() 来定义 Web 服务将使用的端口。 然后使用通过 Azure 机器学习部署模型中所述的常规部署流程。


五、远程虚拟机

Azure 机器学习还支持连接 Azure 虚拟机。 VM 必须是 Azure Data Science Virtual Machine (DSVM)。 此 VM 提供精选的工具和框架用于满足整个机器学习开发生命周期的需求。 有关如何将 DSVM 与 Azure 机器学习配合使用的详细信息,请参阅配置开发环境。

  1. 创建:Azure 机器学习无法为你创建远程 VM。 你需要自行创建 VM,然后将其附加到 Azure 机器学习工作区。 要详细了解如何创建 DSVM,请参阅预配适用于 Linux (Ubuntu) 的 Data Science Virtual Machine。
    Azure 机器学习仅支持运行 Ubuntu 的虚拟机。 创建 VM 或选择现有 VM 时,必须选择使用 Ubuntu 的 VM。
    Azure 机器学习还要求虚拟机具有公共 IP 地址。
  2. 附加:若要附加现有虚拟机作为计算目标,必须提供虚拟机的资源 ID、用户名和密码。 可以使用订阅 ID、资源组名称和 VM 名称按以下字符串格式构造 VM 的资源 ID:/subscriptions//resourceGroups//providers/Microsoft.Compute/virtualMachines/
from azureml.core.compute import RemoteCompute, ComputeTarget
# Create the compute config 
compute_target_name = "attach-dsvm"
attach_config = RemoteCompute.attach_configuration(resource_id='<resource_id>',
                                                ssh_port=22,
                                                username='<username>',
                                                password="<password>")
# Attach the compute
compute = ComputeTarget.attach(ws, compute_target_name, attach_config)
compute.wait_for_completion(show_output=True)
  1. 或者,可以使用 Azure 机器学习工作室将 DSVM 附加到工作区。
    请勿在工作区中为同一 DSVM 创建多个同步附件。 每个新附件都会破坏先前存在的附件。
  2. 配置:为 DSVM 计算目标创建运行配置。 Docker 与 conda 用于在 DSVM 上创建和配置训练环境。
from azureml.core import ScriptRunConfig
from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies
# Create environment
myenv = Environment(name="myenv")
# Specify the conda dependencies
myenv.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'])
# If no base image is explicitly specified the default CPU image "azureml.core.runconfig.DEFAULT_CPU_IMAGE" will be used
# To use GPU in DSVM, you should specify the default GPU base Docker image or another GPU-enabled image:
# myenv.docker.enabled = True
# myenv.docker.base_image = azureml.core.runconfig.DEFAULT_GPU_IMAGE
# Configure the run configuration with the Linux DSVM as the compute target and the environment defined above
src = ScriptRunConfig(source_directory=".", script="train.py", compute_target=compute, environment=myenv)

如果要从工作区中删除(拆离)VM,请使用 RemoteCompute.detach() 方法。

Azure 机器学习不会为你删除 VM。 必须使用 Azure 门户、CLI 或适用于 Azure VM 的 SDK 手动删除 VM。


六、Apache Spark 池

通过 Azure Synapse Analytics 与 Azure 机器学习的集成(预览版),你可以附加由 Azure Synapse 提供支持的 Apache Spark 池,以进行交互式数据探索和准备。 借助这种集成,你可使用专用计算大规模地进行数据整理。 有关详细信息,请参阅如何附加由 Azure Synapse Analytics 提供支持的 Apache Spark 池。


七、Azure HDInsight

Azure HDInsight 是用于大数据分析的热门平台。 该平台提供的 Apache Spark 可用于训练模型。

  1. 创建:Azure 机器学习无法为你创建 HDInsight 群集。 你需要自行创建群集,然后将其附加到 Azure 机器学习工作区。 有关详细信息,请参阅在 HDInsight 中创建 Spark 群集。

Azure 机器学习要求 HDInsight 群集具有公共 IP 地址。 创建群集时,必须指定 SSH 用户名和密码。 请记下这些值,因为在将 HDInsight 用作计算目标时需要用到这些值。 创建群集后,使用主机名 clustername-ssh.azurehdinsight.net 连接到该群集,其中,clustername是为该群集提供的名称。

  1. 附加:若要将 HDInsight 群集附加为计算目标,必须提供该 HDInsight 群集的资源 ID、用户名和密码。 可以使用订阅 ID、资源组名称和 HDInsight 群集名称按以下字符串格式构造 HDInsight 群集的资源 ID:/subscriptions//resourceGroups//providers/Microsoft.HDInsight/clusters/
from azureml.core.compute import ComputeTarget, HDInsightCompute
    from azureml.exceptions import ComputeTargetException
    try:
    # if you want to connect using SSH key instead of username/password you can provide parameters private_key_file and private_key_passphrase
    attach_config = HDInsightCompute.attach_configuration(resource_id='<resource_id>',
                                                          ssh_port=22, 
                                                          username='<ssh-username>', 
                                                          password='<ssh-pwd>')
    hdi_compute = ComputeTarget.attach(workspace=ws, 
                                       name='myhdi', 
                                       attach_configuration=attach_config)
    except ComputeTargetException as e:
    print("Caught = {}".format(e.message))
    hdi_compute.wait_for_completion(show_output=True)

或者,可以使用 Azure 机器学习工作室将 HDInsight 群集附加到工作区。

请勿在工作区中为同一 HDInsight 创建多个同步附件。 每个新附件都会破坏先前存在的附件。

  1. 配置:为 HDI 计算目标创建运行配置。
    ``` from azureml.core.runconfig import RunConfiguration from azureml.core.conda_dependencies import CondaDependencies
# use pyspark framework
run_hdi = RunConfiguration(framework="pyspark")
# Set compute target to the HDI cluster
run_hdi.target = hdi_compute.name
# specify CondaDependencies object to ask system installing numpy
cd = CondaDependencies()
cd.add_conda_package('numpy')
run_hdi.environment.python.conda_dependencies = cd
```

如果要从工作区中删除(拆离)HDInsight 群集,请使用 HDInsightCompute.detach() 方法。

Azure 机器学习不会为你删除 HDInsight 群集。 必须使用 Azure 门户、CLI 或适用于 Azure HDInsight 的 SDK 将其手动删除。


八、Azure Batch

Azure Batch 用于在云中高效运行大规模并行高性能计算 (HPC) 应用程序。 可以在 Azure 机器学习管道中使用 AzureBatchStep 将作业提交到 Azure Batch 计算机池。

若要将 Azure Batch 附加为计算目标,必须使用 Azure 机器学习 SDK 并提供以下信息:

  • Azure Batch 计算名称:在工作区中用于计算的易记名称
  • Azure Batch 帐户名称:Azure Batch 帐户的名称
  • 资源组:包含 Azure Batch 帐户的资源组。

以下代码演示如何将 Azure Batch 附加为计算目标:

from azureml.core.compute import ComputeTarget, BatchCompute
from azureml.exceptions import ComputeTargetException
# Name to associate with new compute in workspace
batch_compute_name = 'mybatchcompute'
# Batch account details needed to attach as compute to workspace
batch_account_name = "<batch_account_name>"  # Name of the Batch account
# Name of the resource group which contains this account
batch_resource_group = "<batch_resource_group>"
try:
    # check if the compute is already attached
    batch_compute = BatchCompute(ws, batch_compute_name)
except ComputeTargetException:
    print('Attaching Batch compute...')
    provisioning_config = BatchCompute.attach_configuration(
        resource_group=batch_resource_group, account_name=batch_account_name)
    batch_compute = ComputeTarget.attach(
        ws, batch_compute_name, provisioning_config)
    batch_compute.wait_for_completion()
    print("Provisioning state:{}".format(batch_compute.provisioning_state))
    print("Provisioning errors:{}".format(batch_compute.provisioning_errors))
print("Using Batch compute:{}".format(batch_compute.cluster_resource_id))

请勿在工作区中为同一 Azure Batch 创建多个同步附件。 每个新附件都会破坏先前存在的附件。

九、Azure Databricks

Azure Databricks 是 Azure 云中基于 Apache Spark 的环境。 它可以用作 Azure 机器学习管道的计算目标。

Azure 机器学习无法创建 Azure Databricks 计算目标。 而必须由你自行创建一个 Azure Databricks 工作区,然后将其附加到 Azure 机器学习工作区。 若要创建工作区资源,请参阅在 Azure Databricks 中运行 Spark 作业文档。

若要从不同 Azure 订阅附加 Azure Databricks 工作区,你(你的 Microsoft Entra 帐户)必须被授予 Azure Databricks 工作区的“参与者”角色。 查看 Azure 门户中的访问权限。

要将 Azure Databricks 附加为计算目标,请提供以下信息:

  • Databricks 计算名称:要分配给此计算资源的名称。
  • Databricks 工作区名称:Azure Databricks 工作区的名称。
  • Databricks 访问令牌:用于对 Azure Databricks 进行身份验证的访问令牌。 若要生成访问令牌,请参阅身份验证文档。

以下代码演示如何使用 Azure 机器学习 SDK 将 Azure Databricks 附加为计算目标:

import os
from azureml.core.compute import ComputeTarget, DatabricksCompute
from azureml.exceptions import ComputeTargetException
databricks_compute_name = os.environ.get(
    "AML_DATABRICKS_COMPUTE_NAME", "<databricks_compute_name>")
databricks_workspace_name = os.environ.get(
    "AML_DATABRICKS_WORKSPACE", "<databricks_workspace_name>")
databricks_resource_group = os.environ.get(
    "AML_DATABRICKS_RESOURCE_GROUP", "<databricks_resource_group>")
databricks_access_token = os.environ.get(
    "AML_DATABRICKS_ACCESS_TOKEN", "<databricks_access_token>")
try:
    databricks_compute = ComputeTarget(
        workspace=ws, name=databricks_compute_name)
    print('Compute target already exists')
except ComputeTargetException:
    print('compute not found')
    print('databricks_compute_name {}'.format(databricks_compute_name))
    print('databricks_workspace_name {}'.format(databricks_workspace_name))
    print('databricks_access_token {}'.format(databricks_access_token))
    # Create attach config
    attach_config = DatabricksCompute.attach_configuration(resource_group=databricks_resource_group,
                                                           workspace_name=databricks_workspace_name,
                                                           access_token=databricks_access_token)
    databricks_compute = ComputeTarget.attach(
        ws,
        databricks_compute_name,
        attach_config
    )
    databricks_compute.wait_for_completion(True)

有关更详细的示例,请参阅 GitHub 上的 示例笔记本。

请勿在工作区中为同一 Azure Databricks 创建多个同步附件。 每个新附件都会破坏先前存在的附件。

十、Azure Data Lake Analytics

Azure Data Lake Analytics 是 Azure 云中的大数据分析平台。 它可以用作 Azure 机器学习管道的计算目标。

使用该平台之前,请先创建 Azure Data Lake Analytics 帐户。 若要创建此资源,请参阅 Azure Data Lake Analytics 入门文档。

若要将 Data Lake Analytics 附加为计算目标,必须使用 Azure 机器学习 SDK 并提供以下信息:

  • 计算名称:要分配给此计算资源的名称。
  • 资源组:包含 Data Lake Analytics 帐户的资源组。
  • 帐户名称:Data Lake Analytics 帐户名。

以下代码演示如何将 Data Lake Analytics 附加为计算目标:

import os
from azureml.core.compute import ComputeTarget, AdlaCompute
from azureml.exceptions import ComputeTargetException
adla_compute_name = os.environ.get(
    "AML_ADLA_COMPUTE_NAME", "<adla_compute_name>")
adla_resource_group = os.environ.get(
    "AML_ADLA_RESOURCE_GROUP", "<adla_resource_group>")
adla_account_name = os.environ.get(
    "AML_ADLA_ACCOUNT_NAME", "<adla_account_name>")
try:
    adla_compute = ComputeTarget(workspace=ws, name=adla_compute_name)
    print('Compute target already exists')
except ComputeTargetException:
    print('compute not found')
    print('adla_compute_name {}'.format(adla_compute_name))
    print('adla_resource_id {}'.format(adla_resource_group))
    print('adla_account_name {}'.format(adla_account_name))
    # create attach config
    attach_config = AdlaCompute.attach_configuration(resource_group=adla_resource_group,
                                                     account_name=adla_account_name)
    # Attach ADLA
    adla_compute = ComputeTarget.attach(
        ws,
        adla_compute_name,
        attach_config
    )
    adla_compute.wait_for_completion(True)

有关更详细的示例,请参阅 GitHub 上的 示例笔记本。

请勿在工作区中为同一 ADLA 创建多个同步附件。 每个新附件都会破坏先前存在的附件。

Azure 机器学习管道只能处理 Data Lake Analytics 帐户的默认数据存储中存储的数据。 如果需要处理的数据不在默认存储中,可以在训练之前使用 DataTransferStep复制数据。


十一、Azure 容器实例

Azure 容器实例 (ACI) 是在部署模型时动态创建的。 不能以任何其他方式创建 ACI 和将其附加到工作区。 有关详细信息,请参阅将模型部署到 Azure 容器实例。

十二、Kubernetes

Azure 机器学习提供了用于为训练和推理附加你自己的 Kubernetes 群集的选项。 请参阅配置 Kubernetes 群集以进行 Azure 机器学习。

若要从工作区分离 Kubernetes 群集,请使用以下方法:

compute_target.detach()
目录
相关文章
|
8天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
29 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
11天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
27 2
|
13天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
31 1
|
8天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
8天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
8天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
2天前
|
存储 人工智能 数据挖掘
Python编程入门:打造你的第一个程序
本文旨在为初学者提供Python编程的初步指导,通过介绍Python语言的基础概念、开发环境的搭建以及一个简单的代码示例,帮助读者快速入门。文章将引导你理解编程思维,学会如何编写、运行和调试Python代码,从而开启编程之旅。
22 2
|
2天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
3天前
|
存储 Python
Python编程入门:理解基础语法与编写简单程序
本文旨在为初学者提供一个关于如何开始使用Python编程语言的指南。我们将从安装Python环境开始,逐步介绍变量、数据类型、控制结构、函数和模块等基本概念。通过实例演示和练习,读者将学会如何编写简单的Python程序,并了解如何解决常见的编程问题。文章最后将提供一些资源,以供进一步学习和实践。
11 1
下一篇
无影云桌面