【机器学习基础】正则化

简介: 【机器学习基础】正则化

1 过拟合问题

如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为 0),但是可能会不能推广到新的数据。

1.1 回归问题中的过拟合

在线性回归中,我们可能遇到上面这几个问题

第一个属于高偏差,欠拟合,不能很好地适应我们的训练集;

第三个属于高方差,模型过于强调拟合原始数据,而不能适应新的数据集,属于过拟合

我们可以看出,若给出一个新的值使之预测,它将表现的很差,是过拟合,虽然能非常好地适应我们的 训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。

1.2 分类问题中的过拟合

同样,在逻辑回归中,我们也可能遇到这些问题

𝑥 的次数越高,拟合的越好,但相应的预测的能力就可能变差

1.3 如何解决

问题是,如果我们发现了过拟合问题,应该如何处理

  1. 丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如 PCA)
  2. 正则化。 保留所有的特征,但是减少参数的大小(magnitude)。

2 代价函数(cost function)

上面的回归问题中如果我们的假设函数是h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 2 + θ 3 x 3 3 + θ 4 x 4 4 ℎ_{\theta} (x) = \theta_0 + \theta_1x_1 + \theta_2x_2^2 + \theta_3x_3^ 3 + \theta_4x_4^4hθ(x)=θ0+θ1x1+θ2x22+θ3x33+θ4x44

我们可以从之前的事例中看出,正是那些高次项导致了过拟合的产生,所以如果我们能让这些高次项的系数接近于 0 的话,我们就能很好的拟合了。 所以我们要做的就是在一定程度上减小这些参数𝜃 的值,这就是正则化的基本原理。我 们决定要减少𝜃3和𝜃4的大小,我们要做的便是修改代价函数,在其中𝜃3和𝜃4 设置一点惩罚。 这样做的话,我们在尝试最小化代价时也需要将这个惩罚纳入考虑中,并最终导致选择较小 一些的𝜃3和𝜃4。

这样做的目的是弱化特征对拟合模型的影响在不减少特征的情况下改变特征的权重

2.1 正则化参数

然而我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚, 并且让代价函数最优化的软件来选择这些惩罚的程度。

将这样的想法与前面线性回归模型中的代价函数结合后,得到了一个较为简单的能防止过拟合问题的代价函数

其中𝜆又称为正则化参数(Regularization Parameter)。

:根据惯例,我们不对𝜃0 进 行惩罚。

如果选择的正则化参数 λ 过大,则会把所有的参数都最小化了,导致模型变成 ℎ𝜃 (𝑥) = 𝜃0,造成欠拟合。

  • 为什么𝜆可以使𝜃的值减小呢

为如果我们令 𝜆 的值很大的话,为了使 Cost Function 尽可能的小,所有的 𝜃 的值 (不包括𝜃0)都会在一定程度上减小。

但若 λ 的值太大了,那么𝜃(不包括𝜃0)都会趋近于 0,这样我们所得到的只能是一条 平行于𝑥轴的直线。 所以对于正则化,我们要取一个合理的 𝜆 的值,这样才能更好的应用正则化。


3 基于正则化的线性回归

对于线性回归的求解,我们之前推导了两种学习算法:一种基于梯度下降,一种基于正规方程。

【机器学习基础】一元线性回归(适合初学者的保姆级文章)

【机器学习基础】多元线性回归(适合初学者的保姆级文章)

3.1 加入正则化参数后的梯度下降算法

那么加入了正则化之后的线性回归代价函数变成了这样:

如果我们要使用梯度下降法求这个代价函数最小值,则梯度下降算法如下所示:

  • 原理

在𝜃j的系数变为(1-a𝜆/m),因为通常学习率a会较小,而m样本数量会较大,所以这个系数会很接近于1。可以看出正则化的梯度下降算法的变化在于,每次都在原有算法更新规则的基础上令𝜃减少一个额外的值(即每一次梯度下降都会对参数𝜃进行惩罚)。

3.2 加入正则化参数后的正规方程

假设输入和输出矩阵如下所示

θ \thetaθ也是一个n + 1 n+1n+1维的矩阵,将他们代入代价函数后,展开并化简,就得到了带正则化项的正规方程:


4 基于正则化的逻辑回归

针对逻辑回归问题,我们已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数𝐽(𝜃),接下来学习了更高级的优化算法,这些高级优化算法需要你自己设计代价函数𝐽(𝜃)

自己计算导数同样对于逻辑回归,我们也给代价函数增加一个正则化的表达式,得到代价函数:

要最小化该代价函数,可以通过梯度下降算法:

相关文章
|
机器学习/深度学习
大模型开发:解释正则化及其在机器学习中的作用。
正则化是防止机器学习过拟合的技术,通过限制模型参数和控制复杂度避免过拟合。它包含L1和L2正则化,前者产生稀疏解,后者适度缩小参数。选择合适的正则化方法和强度对模型性能关键,常用交叉验证评估。
543 1
|
机器学习/深度学习 算法
【机器学习】正则化 Regularization 过拟合欠拟合
【1月更文挑战第27天】【机器学习】正则化 Regularization 过拟合欠拟合
|
机器学习/深度学习 测试技术
机器学习第6天:线性回归模型正则化
机器学习第6天:线性回归模型正则化
|
机器学习/深度学习 人工智能 算法
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
323 3
|
机器学习/深度学习 人工智能 算法
探索机器学习中的正则化技术
在机器学习领域,正则化技术是防止过拟合的关键手段之一。本文将深入探讨L1与L2正则化方法的理论基础、实际应用及其对模型性能的影响。通过对比分析与案例研究,本文旨在为读者提供一套系统的正则化应用框架,帮助构建更加健壮和可靠的机器学习模型。
|
机器学习/深度学习 算法 算法框架/工具
【Python机器学习专栏】深度学习中的正则化与优化技术
【4月更文挑战第30天】本文探讨了深度学习中的正则化和优化技术,以提升模型的泛化能力和训练效率。正则化包括L1和L2正则化以及Dropout,防止过拟合。优化技术涵盖梯度下降法、动量法和Adam优化器,加速模型收敛。Python示例展示了如何在Keras中应用这些技术,如L2正则化、Dropout及Adam优化器。
313 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1199 6
|
7月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
8月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。

热门文章

最新文章