【机器学习】正则化 Regularization 过拟合欠拟合

简介: 【1月更文挑战第27天】【机器学习】正则化 Regularization 过拟合欠拟合
  1. 欠拟合(under fit):还没有拟合到位,训练集和测试集的准确率都还没有到达最高,学的还不到位。
  2. 过拟合(over fit):拟合过度,训练集的准确率升高的同时,测试集的准确率反而降低。学的过度了(走火入魔),做过的卷子都能再次答对(死记硬背),考试碰到新的没见过的题就考不好(不会举一反三)。
  3. 恰到好处(just right):过拟合前,训练集和测试集准确率都达到巅峰。好比,学习并不需要花费很多时间,理解的很好,考试的时候可以很好的把知识举一反三。
    image.png

  正则化就是防止过拟合,增加模型的鲁棒性,鲁棒是 Robust 的音译,也就是强壮的意思。就像计算机软件在面临攻击、网络过载等情况下能够不死机不崩溃,这就是软件的鲁棒性。鲁棒性调优就是让模型拥有更好的鲁棒性,也就是让模型的泛化能力和推广 能力更加的强大。

  举例子说明:下面两个式子描述同一条直线那个更好?

$y = 0.3x_1 + 0.4x_2 + 0.5$

$y = 3x_1 + 4x_2 + 5$

  第一个更好,因为下面的公式是上面的十倍,当 w 越小公式的容错的能力就越好。因为把测试数据带入公式中如果测试集原来是 [32, 128] 在带入的时候发生了一些偏差,比如说变成 [30, 120] ,第二个模型结果就会比第一个模型结果的偏差大的多。公式中 $y = W^Tx$ ,当 x 有一点错误,这个错误会通过 w 放大。但是 w 不能太小,当 w 太小时(比如都趋近0),模型就没有意义了,无法应用。想要有一定的容错率又要保证正确率就要由正则项来发挥作用了!

  所以正则化(鲁棒性调优)的本质就是牺牲模型在训练集上的正确率来提高推广、泛化能力, W 在数值上越小越好,这样能抵抗数值的扰动。同时为了保证模型的正确率 W 又不能极小。 故而人们将原来的损失函数加上一个惩罚项,这里面损失函数就是原来固有的损失函数,比如回归的话通常是 MSE,分类的话通常是 cross entropy 交叉熵,然后在加上一部分惩罚项来使得计算出来的模型 W 相对小一些来带来泛化能力。

  常用的惩罚项有L1 正则项或者 L2 正则项:

  • $L_1 = ||w||1 = \sum\limits{i = 1}^n|w_i|$​ 对应曼哈顿距离
  • $L_2 = ||w||2 = \sqrt{\sum\limits{i = 1}^n(w_i)^2}$ 对应欧氏距离

其实 L1 和 L2 正则的公式数学里面的意义就是范数,代表空间中向量到原点的距离:

$L_p = ||X||p = \sqrt[p]{\sum\limits{i = 1}^nx_i^p} , X = (x_1,x_2,……x_n)$

image.png

  当我们把多元线性回归损失函数加上 L2 正则的时候,就诞生了 Ridge 岭回归。当我们把多元线性回归损失函数加上 L1 正则的时候,就孕育出来了 Lasso 回归。其实 L1 和 L2 正则项惩罚项可以加到任何算法的损失函数上面去提高计算出来模型的泛化能力的。

相关文章
|
4月前
|
机器学习/深度学习 算法
【机器学习】过拟合和欠拟合怎么判断,如何解决?(面试回答)
本文介绍了如何通过观察训练误差和验证误差来判断模型是否出现过拟合或欠拟合,并提供了相应的解决方案,包括增加数据、调整模型复杂度、使用正则化技术等。
410 1
|
23天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的过拟合现象及其解决方案
在机器学习领域,过拟合是一个常见且棘手的问题,它发生在模型过于复杂以至于捕捉到训练数据中的噪声而非信号时。本文将深入探讨过拟合的原因、影响以及如何通过技术手段有效缓解这一问题,旨在为读者提供一个全面而实用的指南。
|
1月前
|
机器学习/深度学习
深入理解机器学习中的过拟合与正则化
深入理解机器学习中的过拟合与正则化
|
2月前
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
423 3
|
2月前
|
机器学习/深度学习 算法 数据挖掘
机器学习入门(二):如何构建机器学习模型,机器学习的三要素,欠拟合,过拟合
机器学习入门(二):如何构建机器学习模型,机器学习的三要素,欠拟合,过拟合
|
2月前
|
机器学习/深度学习 算法 API
【机器学习】正则化,欠拟合与过拟合(详细代码与图片演示!助你迅速拿下!!!)
【机器学习】正则化,欠拟合与过拟合(详细代码与图片演示!助你迅速拿下!!!)
|
7月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
249 14
|
7月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
129 1
|
7月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
7月前
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
339 0