【数据结构和算法】认识线性表中的链表,并实现单向链表(下)

简介: 【数据结构和算法】认识线性表中的链表,并实现单向链表(下)

6.在pos结点位置删除数据(删除pos结点)

如图所示:

代码如下:

//在pos位子删除数据
void ListErase(List** ps, List* pos) {
  assert(ps);
  assert(pos);
  if (*ps == pos) {
    ListPopFront(ps);
  }
  else {
    List* next = *ps;
    while (next->next != pos) {
      next = next->next;
    }
    //这个时候next->next == pos
    next->next = next->next->next;
    /*free(next->next);*/
    free(pos);
    pos = NULL;
  }
}

7.删除pos位置之后一个结点

如图所示:

代码如下:

//在pos位置之后一位删除数据
void ListEraseAfter(List* pos) {
  assert(pos);
  List* next = pos->next;//将pos 的下一个结点赋值给next
  if (next != NULL) {
    pos->next = pos->next->next;//表示pos的下一个的下一个结点的地址赋值给pos的指针域  实质上是将pos的下一个结点给跳过
    free(next);  //将pos的下一个结点给free释放
    next = NULL;  //next指向为NULL  防止野指针
  }
}

8.摧毁链表

代码如下:

//链表的摧毁  直接将头指针指针域指向NULL
void ListDestory(List** ps) {
  //assert(ps);  //防止空链表
  一个结点一个结点释放
  //List* next = *ps;
  //while (next) {
  //  List* cur = next->next;
  //  free(next);
  //  next = cur;
  //}
  *ps = NULL;
}

因为是二级指针,所以直接 *ps=NULL 即可,或者一个一个free

三、完整代码

1.LinkList.h

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#include<assert.h>
typedef int SLDataType;
//单向链表的实现、
typedef struct ListNode {
  SLDataType data;//数据域
  struct ListNode* next;//指针域
}List;
//打印单链表
void ListPrint(List* ps);
//单链表的尾插
void ListPushBack(List** ps, SLDataType data);
//单链表的头插
void ListPushFront(List** ps, SLDataType data);
//单链表的尾删
void ListPopBack(List** ps);
//单链表的头删
void ListPopFront(List** ps);
//单链表的查找
List* ListFind(List* ps);
//在pos位置上插入数据
void ListInsertBefore(List** ps, SLDataType x, List* pos);
//在pos位置之后插入数据
void ListInsertAfter(List** ps, SLDataType x, List* pos);
//在pos位子删除数据
void ListErase(List** ps, List* pos);
//在pos位置之后一位删除数据
void ListEraseAfter(List* pos);
//单链表的摧毁
void ListDestory(List** ps);

2.LinkList.c

#define _CRT_SECURE_NO_WARNINGS
#include"单向链表.h"
//链表的使用,在插入上面
// 如果是尾部插入,如果是空链表直接将新节点给ps 是先找到链表尾部,然后创建新节点,连接即可
// 如果是头部插入,先进行断言判空,之后创建新节点,将新节点的数据
// new->next=ps  这个是找到对应的位置,连接起来
// ps=new;  将新节点的信息传递给ps,这样ps还是头节点
// 
// 
// 
// 
// 
//进行单链表的实现
//初始化链表
void InitList(List* ps) {
  ps->data = 0;
  ps->next = NULL;
}
//打印单链表
void ListPrint(List* ps) {
  List* cur = ps;
  while ((cur) != NULL) {
    printf("%d -> ", cur->data);
    cur = cur->next;
  }
  printf("NULL\n");
}
//创建一个新节点
List* CreateNode(SLDataType x) {
  List* newNode = (List*)malloc(sizeof(List));
  if (newNode == NULL) {
    perror("malloc fail\n");
    exit(-1);
  }
  else {
    newNode->data = x;
    newNode->next = NULL;
  }
  return newNode;
}
//单链表的尾插
void ListPushBack(List** ps, SLDataType data) {
  //创建新的节点
  assert(ps);//断言
  List* newNode = CreateNode(data);
  if (*ps == NULL) {
    //说明是空链表
    *ps = newNode;
  }
  else {
    List* tail = *ps;
    while (tail->next != NULL) {
      tail = tail->next;
    }
    tail->next = newNode;
  }
}
//单链表的头插
void ListPushFront(List** ps, SLDataType data) {
  //先断言是否为空
  assert(ps);
  //将新地址指向头结点下一个next结点的地址,然后在用头结点指向新节点
  List* newNode = CreateNode(data);
  newNode->next = (*ps);  //new指向ps当前的位置,然后new是第一个位置了,将new赋值给ps,这样new就作为头部连接链表了
  (*ps) = newNode;//原本ps位置的数值不变,这样的话就成 new->next=ps,new数值在前,ps的数值在后
}
//单链表的尾删
void ListPopBack(List** ps) {
  assert(ps);//断言
  //三种情况
  //1.空链表
  //2.一个节点
  //3.多个节点
  if (*ps == NULL) {
    return;
  }
  //只有一个节点的情况为
  else if ((*ps)->next == NULL) {
    free(*ps); //如果只有一个头节点的话
    *ps = NULL;
  }
  else {
    //多个节点的情况下、
    List* tail = *ps;
    while (tail->next->next!= NULL) {
      tail = tail->next;
    }
    free(tail->next);
    tail->next= NULL;
  }
}
//单链表的头删
void ListPopFront(List** ps) {
  assert(ps);
  //1.空
  //2.非空
  if (*ps == NULL) {
    //为空
    return;
  }
  else {
    List* tail = (*ps)->next;//创建临时变量tail,将头节点之后的地址给tail
    free(*ps);//滞空头节点
    *ps = NULL;//可有可不有,接下来也要用
    *ps = tail;//将tail也就是ps的下一个List节点给ps
  }
}
//单链表的查找
List* ListFind(List* ps,SLDataType data) {
  //进行查找就是进行判断是否为空链表,为空直接返回
  if (ps == NULL) {
    printf("链表为空、无法查找\n");
    return;
  }
  List* tail = ps;
  while (tail != NULL) {//从头节点开始,进行循环,
    if (tail->data == data) {
      return tail;
    }
    tail = tail->next;
  }
  return tail;
}
//在pos位置上插入数据
void ListInsertBefore(List** ps, SLDataType x, List* pos) {
  //先判断是否为空
  assert(ps);
  assert(pos);
  //空链表排除
  //1.pos是第一个节点
  //2.pos不是第一个节点
  if (*ps == pos) {
    //是第一个节点,那就直接头插
    ListPushFront(ps, x);
  }
  else {
    List* prev = *ps;
    while (prev->next != pos) {
      prev = prev->next;
    }
    List* newnode = CreateNode(x);
    prev->next = newnode;
    newnode->next = pos;
  }
}
//在pos位置之后插入数据
void ListInsertAfter(List** ps, SLDataType x, List* pos) {
  assert(ps);
  //assert(pos);//断言
  List* newnode = CreateNode(x);
  newnode->next = pos->next;
  pos->next = newnode;
}
//在pos位子删除数据
void ListErase(List** ps, List* pos) {
  assert(ps);
  assert(pos);
  if (*ps == pos) {
    ListPopFront(ps);
  }
  else {
    List* next = *ps;
    while (next->next != pos) {
      next = next->next;
    }
    //这个时候next->next == pos
    next->next = next->next->next;
    /*free(next->next);*/
    free(pos);
    pos = NULL;
  }
}
//在pos位置之后一位删除数据
void ListEraseAfter(List* pos) {
  assert(pos);
  List* next = pos->next;//将pos 的下一个结点赋值给next
  if (next != NULL) {
    pos->next = pos->next->next;//表示pos的下一个的下一个结点的地址赋值给pos的指针域  实质上是将pos的下一个结点给跳过
    free(next);  //将pos的下一个结点给free释放
    next = NULL;  //next指向为NULL  防止野指针
  }
}
//链表的摧毁  直接将头指针指针域指向NULL
void ListDestory(List** ps) {
  //assert(ps);  //防止空链表
  一个结点一个结点释放
  //List* next = *ps;
  //while (next) {
  //  List* cur = next->next;
  //  free(next);
  //  next = cur;
  //}
  *ps = NULL;
}

3.test.c

#define _CRT_SECURE_NO_WARNINGS
#include"单向链表.h"
void test()
{
  List* phead=NULL;//作为头节点
  //单链表的尾插
  ListPushBack(&phead, 1);
  ListPushBack(&phead, 2);
  ListPushBack(&phead, 3);
  ListPushBack(&phead, 4);
  ListPushBack(&phead, 5);
  ListPrint(phead);
  ListPushFront(&phead, 1);
  ListPrint(phead);
  ListPopBack(&phead);
  ListPrint(phead);
  ListPopFront(&phead);
  ListPrint(phead);
  ListErase(&phead, phead->next);
  ListInsertAfter(&phead, 10, phead->next);
  ListEraseAfter(phead->next);
  ListPrint(phead);
  ListDestory(&phead);
}
int main()
{
  test();
  return 0;
}

总结

本文主要讲解了链表的分类是什么,两种常用的类型,无头单向非循环链表、有头双向循环链表,我们实现了无头单向非循环链表,这是比较简单的一种链表的实现,我们使用的是二级指针传参,当然使用一级指针传参也可以,主要实现函数为头尾插入,头尾删除,pos指定结点位置前后添加或者删除元素。

接下来,下文我们将跟大家介绍一下最常用链表的另一种形式,带头双向循环链表。

相关文章
|
1天前
|
存储 算法
数据结构和算法——散列表的性能分析(开放地址法的查找性能、期望探测次数与装填因子的关系、分离链接法的查找性能)
数据结构和算法——散列表的性能分析(开放地址法的查找性能、期望探测次数与装填因子的关系、分离链接法的查找性能)
7 0
|
1天前
|
存储 算法 NoSQL
数据结构和算法——哈希查找冲突处理方法(开放地址法-线性探测、平方探测、双散列探测、再散列,分离链接法)
数据结构和算法——哈希查找冲突处理方法(开放地址法-线性探测、平方探测、双散列探测、再散列,分离链接法)
5 1
|
1天前
|
算法
数据结构和算法——散列函数的构造方法(直接定址法、除留余数法、数字分析法、折叠法、平方取中法、ASCII码加和法、前三字符移位法)
数据结构和算法——散列函数的构造方法(直接定址法、除留余数法、数字分析法、折叠法、平方取中法、ASCII码加和法、前三字符移位法)
3 0
|
1天前
|
存储 算法
数据结构和算法——了解哈希表(哈希查找、散列的基本思想)
数据结构和算法——了解哈希表(哈希查找、散列的基本思想)
6 0
|
23天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
1天前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的CDVRP问题求解matlab仿真
该文介绍了车辆路径问题(Vehicle Routing Problem, VRP)中的组合优化问题CDVRP,旨在找寻满足客户需求的最优车辆路径。在MATLAB2022a中运行测试,结果显示了算法过程。核心程序运用了GA-PSO混合算法,包括粒子更新、交叉、距离计算及变异等步骤。算法原理部分详细阐述了遗传算法(GA)的编码、适应度函数、选择、交叉和变异操作,以及粒子群优化算法(PSO)的粒子表示、速度和位置更新。最后,GA-PSO混合算法结合两者的优点,通过迭代优化求解CDVRP问题。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于DCT变换和位平面分解的数字水印嵌入提取算法matlab仿真
这是一个关于数字水印算法的摘要:使用MATLAB2022a实现,结合DCT和位平面分解技术。算法先通过DCT变换将图像转至频域,随后利用位平面分解嵌入水印,确保在图像处理后仍能提取。核心程序包括水印嵌入和提取,以及性能分析部分,通过PSNR和NC指标评估水印在不同噪声条件下的鲁棒性。
|
9天前
|
算法 数据安全/隐私保护 C++
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。
|
9天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的32QAM解调算法matlab性能仿真
```markdown - 32QAM解调算法运用BP神经网络在matlab2022a中实现,适应复杂通信环境。 - 网络结构含输入、隐藏和输出层,利用梯度下降法优化,以交叉熵损失最小化为目标训练。 - 训练后,解调通过前向传播完成,提高在噪声和干扰中的数据恢复能力。 ``` 请注意,由于字符限制,部分详细信息(如具体图示和详细步骤)未能在摘要中包含。
|
11天前
|
机器学习/深度学习 算法 网络架构
基于yolov2深度学习网络的单人口罩佩戴检测和人脸定位算法matlab仿真
摘要:该内容展示了一个基于YOLOv2的单人口罩佩戴检测和人脸定位算法的应用。使用MATLAB2022A,YOLOv2通过Darknet-19网络和锚框技术检测图像中的口罩佩戴情况。核心代码段展示了如何处理图像,检测人脸并标注口罩区域。程序会实时显示检测结果,等待一段时间以优化显示流畅性。