MYSQL高级篇-----索引优化分析(三)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MYSQL高级篇-----索引优化分析(三)

2.5 优化分析

2.5.1 索引单表优化

数据准备


视频地址


DROP TABLE IF EXISTS `article`;
CREATE TABLE IF NOT EXISTS `article`(
`id` INT(10) UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT COMMENT '主键',
`author_id` INT(10) UNSIGNED NOT NULL COMMENT '作者id',
`category_id` INT(10) UNSIGNED NOT NULL COMMENT '分类id',
`views` INT(10) UNSIGNED NOT NULL COMMENT '被查看的次数',
`comments` INT(10) UNSIGNED NOT NULL COMMENT '回帖的备注',
`title` VARCHAR(255) NOT NULL COMMENT '标题',
`content` VARCHAR(255) NOT NULL COMMENT '正文内容'
) COMMENT '文章';
INSERT INTO `article`(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES(1,1,1,1,'1','1');
INSERT INTO `article`(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES(2,2,2,2,'2','2');
INSERT INTO `article`(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES(3,3,3,3,'3','3');
INSERT INTO `article`(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES(1,1,3,3,'3','3');
INSERT INTO `article`(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES(1,1,4,4,'4','4');


案例:查询category_id为1且comments大于1的情况下,views最多的article_id。


1、编写SQL语句并查看SQL执行计划。

# 1、sql语句
SELECT id,author_id FROM article WHERE category_id = 1 AND comments > 1 ORDER BY views DESC LIMIT 1;
# 2、sql执行计划
mysql> EXPLAIN SELECT id,author_id FROM article WHERE category_id = 1 AND comments > 1 ORDER BY views DESC LIMIT 1\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: article
   partitions: NULL
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 5
     filtered: 20.00
        Extra: Using where; Using filesort  # 产生了文件内排序,需要优化SQL
1 row in set, 1 warning (0.00 sec)


2、创建索引idx_article_ccv。


CREATE INDEX idx_article_ccv ON article(category_id,comments,views);

3、查看当前索引。


show index from 表名;


4、查看现在SQL语句的执行计划。

我们发现,创建符合索引idx_article_ccv之后,虽然解决了全表扫描的问题,但是在order by排序的时候没有用到索引,MySQL居然还是用的Using filesort,为什么?


5、

我们试试把SQL修改为SELECT id,author_id FROM article WHERE category_id = 1 AND comments = 1 ORDER BY views DESC LIMIT 1;

看看SQL的执行计划。


推论:当comments > 1的时候order by排序views字段索引就用不上,但是当comments = 1的时候order by排序views字段索引就可以用上!!!

所以,范围之后的索引会失效。


6、

我们现在知道范围之后的索引会失效,原来的索引idx_article_ccv最后一个字段views会失效,那么我们如果删除这个索引,创建idx_article_cv索引呢????

/* 创建索引 idx_article_cv */
CREATE INDEX idx_article_cv ON article(category_id,views);


查看当前的索引

show index  from  表名;


7、当前索引是idx_article_cv,来看一下SQL执行计划。


2.5.2 索引两表优化

建立两张表

CREATE TABLE IF NOT EXISTS class(
  id INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
  card INT(10) UNSIGNED NOT NULL,
  PRIMARY KEY(id)
);
CREATE TABLE IF NOT EXISTS book(
  bookid INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
  card INT(10) UNSIGNED NOT NULL,
  PRIMARY KEY(bookid)
);
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));


两表连接查询的SQL执行计划


1、不创建索引的情况下,SQL的执行计划。

book和class两张表都是没有使用索引,全表扫描,那么如果进行优化,索引是创建在book表还是创建在class表呢?下面进行大胆的尝试!


2、左表(book表)创建索引。


创建索引idx_book_card

/* 在book表创建索引 */
CREATE INDEX idx_book_card ON book(card);


在book表中有idx_book_card索引的情况下,查看SQL执行计划


3、删除book表的索引,右表(class表)创建索引。


创建索引idx_class_card

/* 在class表创建索引 */
CREATE INDEX idx_class_card ON class(card);


在class表中有idx_class_card索引的情况下,查看SQL执行计划





由此可见,左连接将索引创建在右表上更合适,右连接将索引创建在左表上更合适

所以:索引两表优化,左连接右表建索引,右连接左表建索引


2.5.3 索引三表优化

建立三张表:

(在前面中有两张表,现在多一个表即可)

CREATE TABLE IF NOT EXISTS phone(
  phoneid INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
  card INT(10) UNSIGNED NOT NULL,
  PRIMARY KEY(phoneid)
)ENGINE=INNODB;
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20)));


三表连接查询SQL优化


1、不加任何索引,查看SQL执行计划。



2、根据两表查询优化的经验,左连接需要在右表上添加索引,所以尝试在book表和phone表上添加索引。

/* 在book表创建索引 */
CREATE INDEX idx_book_card ON book(card);
/* 在phone表上创建索引 */
CREATE INDEX idx_phone_card ON phone(card);


再次执行SQL的执行计划


2.5.4 Join语句的优化

尽可能减少Join语句中的NestedLoop的循环总次数:“永远用小结果集驱动大的结果集”。

优先优化NestedLoop的内层循环

保证Join语句中被驱动表上Join条件字段已经被索引。

当无法保证被驱动表的Join条件字段被索引且内存资源充足的前提下,不要太吝惜JoinBuffer的设置。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
7天前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
|
8天前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
29天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
12天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
16天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
44 3
|
19天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
43 1
|
26天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
68 9
|
20天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
97 1
|
26天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
56 5
|
29天前
|
存储 关系型数据库 MySQL
基于案例分析 MySQL 权限认证中的具体优先原则
【10月更文挑战第26天】本文通过具体案例分析了MySQL权限认证中的优先原则,包括全局权限、数据库级别权限和表级别权限的设置与优先级。全局权限优先于数据库级别权限,后者又优先于表级别权限。在权限冲突时,更严格的权限将被优先执行,确保数据库的安全性与资源合理分配。
下一篇
无影云桌面