Hadoop和Spark的异同

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Hadoop实质上是解决大数据大到无法在一台计算机上进行存储、无法在要求的时间内进行处理的问题,是一个分布式数据基础设施。HDFS,它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,通过将块保存到多个副本上,提供高可靠的文件存储。MapReduce,通过简单的Mapper和Reducer的抽象提供一个编程模型,可以在一个由几十台上百台的机器上并发地分布式处理大量数据集,而把并发、分布式和故障恢复等细节隐藏。

解决问题的层面不一样


  • Hadoop实质上是解决大数据大到无法在一台计算机上进行存储、无法在要求的时间内进行处理的问题,是一个分布式数据基础设施。
  • HDFS,它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,通过将块保存到多个副本上,提供高可靠的文件存储。
  • MapReduce,通过简单的Mapper和Reducer的抽象提供一个编程模型,可以在一个由几十台上百台的机器上并发地分布式处理大量数据集,而把并发、分布式和故障恢复等细节隐藏。
  • Hadoop复杂的数据处理需要分解为多个Job(包含一个Mapper和一个Reducer)组成的有向无环图。
  • Spark则允许程序开发者使用有向无环图(DAG)开发复杂的多步数据管道。而且还支持跨有向无环图的内存数据共享,以便不同的作业可以共同处理同一个数据。是一个专门用来对那些分布式存储的大数据进行处理的工具,它并不会进行分布式数据的存储。
  • 可将Spark看作是Hadoop MapReduce的一个替代品而不是Hadoop的替代品。

Hadoop的局限和不足


  • 一个Job只有Map和Reduce两个阶段,复杂的计算需要大量的Job完成,Job间的依赖关系由开发人员进行管理。
  • 中间结果也放到HDFS文件系统中。对于迭代式数据处理性能比较差。
  • Reduce Task需要等待所有的Map Task都完成后才开始计算。
  • 时延高,只适用批量数据处理,对于交互式数据处理,实时数据处理的支持不够。

两者可合可分


  • Hadoop除了提供HDFS分布式数据存储功能之外,还提供了MapReduce的数据处理功能。所以我们完全可以抛开Spark,仅使用Hadoop自身的MapReduce来完成数据的处理。
  • 相反,Spark也不是非要依附在Hadoop身上才能生存。但它没有提供文件管理系统,所以,它必须和其他的分布式文件系统进行集成才能运作。我们可以选择Hadoop的HDFS,也可以选择其他的基于云的数据系统平台。但Spark默认来说还是被用在Hadoop上面的,被认为它们的结合是最好的选择。

Spark数据处理速度秒杀MapReduce


  • Spark因为处理数据的方式不一样,会比MapReduce快上很多。MapReduce是分步对数据进行处理的: “从集群中读取数据,进行一次处理,将结果写到集群,从集群中读取更新后的数据,进行下一次的处理,将结果写到集群,等等…”
  • Spark会在内存中以接近“实时”的时间完成所有的数据分析:“从集群中读取数据,完成所有必须的分析处理(依赖多个算子),将结果写回集群,完成,” Spark的批处理速度比MapReduce快近10倍,内存中的数据分析速度则快近100倍。
  • 如果需要处理的数据和结果需求大部分情况下是静态的,且有充足的时间等待批处理的完成,MapReduce的处理方式也是完全可以接受的。
  • 但如果你需要对时实流数据进行分析,比如来自工厂的传感器收集回来的数据,又或者用户访问网站的日志信息,那么更应该使用Spark进行处理。

灾难恢复机制


  • 两者的灾难恢复方式不同,因为Hadoop将每次处理后的数据都写入到磁盘上,所以其天生就能很有弹性的对系统错误进行处理。
  • Spark的数据对象存储在分布于数据集群中的叫做弹性分布式数据集(RDD: Resilient Distributed Dataset)中。这些数据对象既可以放在内存,也可以放在磁盘,所以RDD同样也可以提供完成的灾难恢复功能。

Spark优势


  • Spark的优势不仅体现在性能提升上,Spark框架为批处理(Spark Core),交互式(Spark SQL),流式(Spark Streaming),机器学习(MLlib),图计算(GraphX)提供了一个统一的数据处理平台。
  • Spark通过在数据处理过程中成本更低的Shuffle方式,将MapReduce提升到一个更高的层次。利用内存数据存储和接近实时的处理能力,Spark比其他的大数据处理技术的性能要快很多倍。
  • Spark将中间结果保存在内存中而不是写入磁盘,当需要多次处理同一数据集时,这一点特别实用。
  • 支持比Map和Reduce更多的函数。
  • Spark的RDD是分布式大数据处理的高层次抽象的数据集合,对这个集合的任何操作都可以像函数式编程中操作内存中的集合一样直观、简便,但集合操作的实现确是在后台分解成一系列Task发送到集群上完成。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
162 6
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
66 2
|
23天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
80 2
|
24天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
63 1
|
24天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
69 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
63 0
|
1月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
42 0
|
1月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
92 0
|
25天前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
50 6
|
25天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
53 1

相关实验场景

更多
下一篇
无影云桌面