数据结构与算法(八) 双指针

简介: 数据结构与算法(八) 双指针

前言


这篇文章来讲双指针,这是一种在实际情况中十分常用的算法


正文


1、左右指针


左右指针主要来解决数组的问题,其中一些典型的应用场景以下会举例说明

一般来说,左右指针分别初始化在数组的左右两端,两指针同时向中间移动直至相遇

int binarySearch(vector<int>& nums, int target) {
    int n = nums.size();
    int p1 = 0;     // 左指针初始化在数组左端
    int p2 = n - 1; // 右指针初始化在数组右端
    while (p1 <= p2) {
        int mid = p1 + (p2 - p1) / 2;
        if (nums[mid] == target) {
            return mid;
        } else if (nums[mid] < target) {
            p1 = mid + 1; // 左指针向右移动
        } else if (nums[mid] > target) {
            p2 = mid - 1; // 右指针向左移动
        }
    }
    return -1;
}


例题:反转数组

void reverseArray(vector<int>& nums) {
    int n = nums.size();
    int p1 = 0;     // 左指针初始化在数组左端
    int p2 = n - 1; // 右指针初始化在数组右端
    while (p1 < p2) {
        swap(nums[p1], nums[p2]);
        p1++; // 左指针向右移动
        p2--; // 右指针向左移动
    }
}


2、快慢指针

快慢指针主要来解决链表的问题,其中一些典型的应用场景以下会举例说明

一般来说,快慢指针都初始化在链表左端,两指针呈加性或乘性关系逐步向右端移动

  • 例题:判断链表是否有环
bool hasCycle(ListNode* head) {
    ListNode* fast = head; // 快指针
    ListNode* slow = head; // 慢指针
    while (
        fast != nullptr &&
        fast -> next != nullptr
    ) {
        fast = fast -> next -> next; // 快指针每次走 2 步
        slow = slow -> next;         // 慢指针每次走 1 步
        if (fast == slow) {
            return  true;
        }
    }
    return  false;
}
// 思路
// 假如链表有环,指针移动会陷入死循环,不能到达末尾
// 换句话说,如果指针能到达末尾,则表明链表不存在环
// 假如链表有环,快指针每次走两步,慢指针每次走一步
// 那么快慢指针必然会在环上的某个节点相遇


例题:如果链表无环,找出链表中点

ListNode* listMiddle(ListNode* head) {
    ListNode* fast = head; // 快指针
    ListNode* slow = head; // 慢指针
    while (
        fast != nullptr &&
        fast -> next != nullptr
    ) {
        fast = fast -> next -> next; // 快指针每次走 2 步
        slow = slow -> next;         // 慢指针每次走 1 步
    }
    return slow;
}
// 思路
// 假如链表无环,快指针每次走两步,慢指针每次走一步
// 那么,当快指针到链表末尾时,慢指针刚好到链表中点


例题:如果链表无环,找出链表倒数第 n 个节点

ListNode* listLastK(ListNode* head, int n) {
    ListNode* fast = head;   // 快指针
    ListNode* slow = head;   // 慢指针
    while (n-- > 0) {        // 快指针首先走 n 步
        fast = fast -> next;
    }
    while (fast != nullptr) {
        fast = fast -> next; // 快指针每次走 1 步
        slow = slow -> next; // 慢指针每次走 1 步
    }
    return slow;
}
// 思路
// 首先,快指针先走 n 步,然后,快慢指针同时走
// 当快指针到达末尾,慢指针就是倒数第 n 个节点


例题:如果链表有环,找出环的起点

ListNode* listCycleS(ListNode* head) {
    ListNode* fast = head; // 快指针
    ListNode* slow = head; // 慢指针
    while (
        fast != nullptr &&
        fast -> next != nullptr
    ) {
        fast = fast -> next -> next; // 快指针每次走 2 步
        slow = slow -> next;         // 慢指针每次走 1 步
        if (slow == fast) {
            break;
        }
    }
    slow = head;
    while (slow != fast) {
        fast = fast -> next; // 快指针每次走 1 步
        slow = slow -> next; // 慢指针每次走 1 步
    }
    return slow;
}
// 思路
// 假如链表有环,快指针每次走两步,慢指针每次走一步
// 那么快慢指针必然会在环上的某个节点相遇
// 如果这时让慢指针或快指针指向头节点,并让快慢指针同时逐步前进
// 那么当它们再次相遇时,就是环的起点
// 为什么呢
// 假设它们第一次相遇时,慢指针走了 n 步,快指针走了 2n 步
// 快指针多走的 n 步是从相遇点绕了环整数圈回到相遇点
// 设从环起点到相遇点是 m 步
// 对于慢指针而言,过去从头节点走了 n - m 步到达环起点,然后走了 m 步到达相遇点
// 对于快指针而言,未来从相遇点再走 n - m 步能到环起点,因为再走 n 步是到相遇点
// 如果现在把慢指针指向头节点,把快指针留在相遇点
// 那么,当它们同时再走 n - m 步,就能在环起点再次相遇


例题:如果链表有环,找出环的长度

int listCycleL(ListNode* head) {
    ListNode* fast = head; // 快指针
    ListNode* slow = head; // 慢指针
    while (
        fast != nullptr &&
        fast -> next != nullptr
    ) {
        fast = fast -> next -> next; // 快指针每次走 2 步
        slow = slow -> next;         // 慢指针每次走 1 步
        if (slow == fast) {
            break;
        }
    }
    int clen = 0;
    fast = fast -> next -> next;     // 快指针每次走 2 步
    slow = slow -> next;             // 慢指针每次走 1 步
    clen += 1;
    while (slow != fast) {
        fast = fast -> next -> next; // 快指针每次走 2 步
        slow = slow -> next;         // 慢指针每次走 1 步
        clen += 1;
    }
    return clen;
}
// 思路
// 假如链表有环,快指针每次走两步,慢指针每次走一步
// 那么快慢指针必然会在环上的某个节点相遇
// 这时快指针每次走两步,慢指针每次走一步
// 记录慢指针再次相遇快指针时的步数,就是环的长度
// 因为对于慢指针而言,刚好走过环的一圈回到相遇点
// 另外对于快指针而言,刚好走过环的两圈回到相遇点


3、滑动窗口


滑动窗口主要来解决子串的问题,其常规步骤及核心问题如下:


  • 初始化左右指针,并确定窗口是左闭右闭区间还是左闭右开区间等等
  • 右指针向右滑动,扩大窗口范围,直至窗口能够满足条件或不再满足条件,并更新数据
  • 左指针向右滑动,缩小窗口范围,直至窗口不再满足条件或能够满足条件,并更新数据
  • 重复上述两步骤,直至右指针到达字符串的末尾

滑动窗口典型的应用场景如下:


找出不含重复字符的最长子串 | leetcode3

给定一个字符串 s,找出其中不含重复字符的最长子串

解题思路:

在字符串 s 上使用滑动窗口,要求窗口不含重复字符

解题步骤:

初始化左右指针在字符串的开头,定义窗口为左闭右闭区间

右指针向右滑动,扩大窗口范围,直至窗口不再满足要求,更新辅助数据结构和答案

左指针向右滑动,缩小窗口范围,直至窗口能够满足要求,更新辅助数据结构

重复上述两步骤,直至右指针到达字符串的结尾

关键问题:

如何判断窗口是否包含重复字符?

维护一个辅助数据结构哈希集合,用于保存窗口包含的字符

当右指针移动、扩大窗口范围时,将其扫过的字符加入集合

当左指针移动、缩小窗口范围时,将其扫过的字符从集合中删除


class Solution {
public:
    int lengthOfLongestSubstring(string s) {
        int n = s.size();
        if (n == 0) {
            return 0;
        }
        // 初始化辅助结构
        // 具体为哈希集合,用于保存窗口包含的字符
        unordered_set<char> set;
        // 初始化左右指针
        // 定义为左闭右闭区间
        int p1 = 0;
        int p2 = -1;
        // 初始化答案的值
        int ans = INT_MIN;
        // 滑动窗口主流程
        while (true) {
            // 右指针向右滑动,扩大窗口范围,直至窗口包含重复字符,更新辅助数据结构
            // 因为是求最大值,所以要在扩大窗口范围时更新答案
            while (true) {
                p2++;
                if (p2 <= n - 1 && set.find(s[p2]) == set.end()) {
                    ans = max(ans, p2 - p1 + 1);
                    set.insert(s[p2]);
                } else {
                    break;
                }
            }
            // 右指针到达字符串的结尾时停止
            if (p2 >= n) {
                break;
            }
            // 左指针向右滑动,缩小窗口范围,直至窗口不含重复字符,更新辅助数据结构
            while (true) {
                p1++;
                if (s[p1 - 1] != s[p2]) {
                    set.erase(s[p1 - 1]);
                } else {
                    break;
                }
            }
        }
        // 返回答案
        return ans;
    }
};


优化思路:


上述思路在移动左指针时,其实有很多不必要的操作

而通过优化辅助数据结构,可以使左指针一步移动到合适的位置



具体做法:


将辅助数据结构改变成哈希映射,用于记录窗口扫过的字符及其最后一次出现的位置

这样右指针遇到出现过的字符时,可以快速找到该字符上一次出现的位置,即左指针的更新位置

class Solution {
public:
    int lengthOfLongestSubstring(string s) {
        int n = s.size();
        if (n == 0) {
            return 0;
        }
        // 初始化辅助结构
        // 具体为哈希映射,键为出现过的字符,值为其最后一次出现的位置
        unordered_map<char, int> map;
        // 初始化左右指针
        // 定义为左闭右闭区间
        int p1 = 0;
        int p2 = -1;
        // 初始化答案的值
        int ans = INT_MIN;
        // 滑动窗口主流程
        while (true) {
            // 右指针向右滑动,扩大窗口范围,直至窗口包含重复字符,更新辅助数据结构
            // 因为是求最大值,所以要在扩大窗口范围时更新答案
            while (true) {
                p2++;
                if (p2 <= n - 1 && (map.find(s[p2]) == map.end() || map.find(s[p2]) -> second < p1)) {
                    ans = max(ans, p2 - p1 + 1);
                    map[s[p2]] = p2;
                } else {
                    break;
                }
            }
            // 右指针到达字符串的结尾时停止
            if (p2 >= n) {
                break;
            }
            // 左指针一步到位,缩小窗口范围,使得窗口不含重复字符,更新辅助数据结构
            p1 = map[s[p2]] + 1;
            map[s[p2]] = p2;
        }
        // 返回答案
        return ans;
    }
};

找出覆盖给定字符的最短子串 | leetcode76

给定两个字符串 st,找出 s 中涵盖 t 所有字符的最短子串

解题思路:

在字符串 s 上使用滑动窗口,要求窗口涵盖字符串 t 的所有字符

解题步骤:

初始化左右指针在字符串的开头,定义窗口为左闭右闭区间

右指针向右滑动,扩大窗口范围,直至窗口能够满足要求,更新辅助数据结构

左指针向右滑动,缩小窗口范围,直至窗口不再满足要求,更新辅助数据结构和答案

重复上述两步骤,直至右指针到达字符串的结尾

关键问题:

根据上述思路,需要解决一个关键问题,即如何判断 s 中的窗口是否涵盖 t 中的所有字符?

维护两个哈希映射,分别用于保存 t 中的所有字符及其数量以及 s 窗口中的字符及其数量

然后根据哈希映射,判断 s 所对

class Solution {
public:
    string minWindow(string s, string t) {
        int sLen = s.size();
        int tLen = t.size();
        if (sLen < tLen) {
            return "";
        }
        // 初始化辅助结构
        // 具体为哈希映射
        unordered_map<char, int> sCnt; // 用于存放 s 窗口中的字符及其数量
        unordered_map<char, int> tCnt; // 用于存放 t 中所有的字符及其数量
        for (char & c: t) {
            tCnt[c]++;
        }
        // 初始化左右指针
        // 定义为左闭右闭区间
        int p1 = 0;
        int p2 = -1;
        // 初始化答案的值
        int ansL = INT_MAX;
        int ans1;
        int ans2;
        // 滑动窗口主流程
        while (true) {
            // 右指针向右滑动,扩大窗口范围,直至窗口包含字符串 t 所有字符
            while (true) {
                p2++;
                sCnt[s[p2]]++;
                if (check(sCnt, tCnt) || p2 >= sLen) {
                    break;
                }
            }
            // 右指针到达字符串的结尾时停止
            if (p2 >= sLen) {
                break;
            }
            // 左指针向右滑动,缩小窗口范围,直至窗口不含字符串 t 所有字符
            // 因为是求最小值,所以要在缩小窗口范围时更新答案
            while (true) {
                if (ansL > p2 - p1 + 1) {
                    ansL = p2 - p1 + 1;
                    ans1 = p1;
                    ans2 = p2;
                }
                sCnt[s[p1]]--;
                p1++;
                if (!check(sCnt, tCnt) || p1 > p2) {
                    break;
                }
            }
            // 左指针到达字符串的结尾时停止
            if (p1 >= sLen) {
                break;
            }
        }
        // 返回答案
        return ansL == INT_MAX ? "" : s.substr(ans1, ansL);
    }
    // 判断 s 中的窗口是否涵盖 t 所有字符
    bool check(
        unordered_map<char, int>& sCnt,
        unordered_map<char, int>& tCnt
    ) {
        for (auto & item: tCnt) {
            if (sCnt[item.first] < item.second) {
                return false;
            }
        }
        return true;
    }
};

找出给定字符串的异位词子串 | leetcode438

给定两个字符串 sp,找出 s 中所有 p 的异位词的开始索引

解题思路:

在字符串 s 上使用滑动窗口,要求窗口就是字符串 p 的异位词

这里隐含一个要求,那就是 s 中的窗口的长度和 p 的长度要是一样的

解题步骤:

初始化左右指针,定义窗口为左闭右闭区间,窗口长度等于异位词长度

将窗口向右移动,也即右指针向右移动一步、左指针向右移动一步,并更新辅助数据结构和答案

重复上述的步骤,直至右指针到达字符串的结尾

关键问题:

根据上述思路,需要解决一个关键问题,即如何判断 s 中的窗口是否等于 p 中的所有字符?

维护两个哈希映射,分别用于保存 p 中的所有字符及其数量以及 s 窗口中的字符及其数量

然后根据哈希映射,判断 s 所对应的哈希

class Solution {
public:
    vector<int> findAnagrams(string s, string p) {
        int sLen = s.size();
        int pLen = p.size();
        if (sLen < pLen) {
            return vector<int>();
        }
        // 初始化辅助结构
        // 具体为哈希映射
        unordered_map<char, int> sCnt; // 用于存放 s 窗口中的字符及其数量
        unordered_map<char, int> pCnt; // 用于存放 p 中所有的字符及其数量
        for (int i = 0; i < pLen; i++) {
            pCnt[p[i]]++;
        }
        // 初始化左右指针
        // 定义为左闭右闭区间
        int p1 = 0;
        int p2 = pLen - 1;
        for (int i = 0; i < pLen; i++) {
            sCnt[s[i]]++;
        }
        // 初始化答案的值
        vector<int> ans;
        if (check(sCnt, pCnt)) {
            ans.emplace_back(0);
        }
        // 滑动窗口主流程
        while (true) {
            // 右指针向右一步
            p2++;
            sCnt[s[p2]]++;
           // 左指针向右一步
            sCnt[s[p1]]--;
            p1++;
            // 右指针到达字符串的结尾时停止
            if (p2 >= sLen) {
                break;
            }
            // 更新答案
            if (check(sCnt, pCnt)) {
                ans.emplace_back(p1);
            }
        }
        // 返回答案
        return ans;
    }
    // 判断 s 中的窗口是否就是 p 的异位词
    bool check(
        unordered_map<char, int>& sCnt,
        unordered_map<char, int>& pCnt
    ) {
        for (auto & item: pCnt) {
            if (sCnt[item.first] != item.second) {
                return false;
            }
        }
        return true;
    }
};

目录
相关文章
|
2天前
|
存储 算法 容器
算法:双指针
算法:双指针
10 3
|
18天前
|
算法 前端开发 JavaScript
< 每日算法:一文带你认识 “ 双指针算法 ” >
`双指针`并非指的是一种具体的公式或者范式。而是一种运算思路,用于节省逻辑运算时间的`逻辑思路`!双指针算法通常用于`优化时间复杂度`!
< 每日算法:一文带你认识 “ 双指针算法 ” >
|
22天前
|
算法
|
28天前
|
算法
优选算法|【双指针】|611.有效三角形的个数
优选算法|【双指针】|611.有效三角形的个数
|
28天前
|
算法
优选算法|【双指针】|202.快乐数
优选算法|【双指针】|202.快乐数
|
28天前
|
算法
优选算法|【双指针】283.移动零
优选算法|【双指针】283.移动零
|
28天前
|
算法
优选算法|【双指针】|1089.复写零
优选算法|【双指针】|1089.复写零
|
29天前
|
算法
【优选算法专栏】专题一:双指针--------1.移动0
【优选算法专栏】专题一:双指针--------1.移动0
19 0
|
1月前
|
算法 C++
双指针算法·两数之和·三数之和
双指针算法·两数之和·三数之和
8 0
|
1月前
|
算法 C++ 容器
day1·算法-双指针
day1·算法-双指针
9 0