阿旭机器学习实战【1】K-近邻算法(KNN)模型应用实例,以及图像表征方式

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 阿旭机器学习实战【1】K-近邻算法(KNN)模型应用实例,以及图像表征方式

引言


如何进行电影分类


众所周知,电影可以按照题材分类,然而题材本身是如何定义的?由谁来判定某部电影属于哪个题材?也就是说同一题材的电影具有哪些公共特征?这些都是在进行电影分类时必须要考虑的问题。


没有哪个电影人会说自己制作的电影和以前的某部电影类似,但我们确实知道每部电影在风格 上的确有可能会和同题材的电影相近。那么动作片具有哪些共有特征,使得动作片之间非常类似, 而与爱情片存在着明显的差别呢?


动作片中也会存在接吻镜头,爱情片中也会存在打斗场景,我们不能单纯依靠是否存在打斗或者亲吻来判断影片的类型。但是爱情片中的亲吻镜头更多,动作片中 的打斗场景也更频繁,基于此类场景在某部电影中出现的次数可以用来进行电影分类。


本文介绍的机器学习算法–K-近邻算法(也叫KNN算法),来解决这个类分类问题。


1. k-近邻算法原理


存在一个样本数据集合,即训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。


一般来说,我们只选择样本数据集中前K个最相似的数据,这就是K-近邻算法中K的出处,通常K是不大于20的整数。最后 ,选择K个最相似数据中出现次数最多的分类,作为新数据的分类。


那么上面提到的数据之间的相似性如何描述呢?


K-近邻算法采用测量不同特征值之间的距离方法来进行解决的。通常采用的是欧式距离进行计算。取前K个距离最近的数据,然后类别最多的一类胜出。


  • 优点:精度高、对异常值不敏感、无数据输入假定。
  • 缺点:时间复杂度高、空间复杂度高。
  • 适用数据范围:数值型和标称型。


回到引言中电影分类的例子,使用K-近邻算法分类爱情片和动作片。有人曾经统计过很多电影的打斗镜头和接吻镜头,下图显示了6部电影的打斗和接吻次数。假如有一部未看过的电影,如何确定它是爱情片还是动作片呢?我们可以使用K-近邻算法来解决这个问题。

54694b5900244655ad95e321e7034d35.png

首先我们需要知道这个未知电影存在多少个打斗镜头和接吻镜头,上图中问号位置是该未知电影出现的镜头数图形化展示,具体数字参见下表。


3978062491854d2ca462d35515ef7a3d.png


现在假如我们给定一个未知电影分类的打斗镜头与接吻镜头数,我们可以计算得到样本集中所有电影与未知电影的距离,按照距离递增排序,可以找到K个距离最近的电影,然后在这K个电影中最多的分类数即为该电影的类别。


755f9471817e450b952b07c21743dd22.png


假定k=3,计算得到三个最靠近的电影依次是California Man、He’s Not Really into Dudes、Beautiful Woman。K-近邻算法按照距离最近的三部电影的类型,决定未知电影的类型,而这三部电影全是爱情片,因此我们判定未知电影是爱情片。


欧几里得距离(Euclidean Distance)


针对上述不同样本之间的距离计算方式有很多种,其中欧氏距离是最常见的距离度量方式,衡量的是多维空间中各个点之间的绝对距离。公式如下:


245db2730d7a4cd480e8c27dcd88d7ea.png


2. K-近邻算法的步骤


1、我们求未知点到所有样本点的距离

2、对以上求的距离进行排序(从小到大)

3、对排序号的样本点取前K个(注意K值一般不大于20)

4、对这前K个样本的标签进行分析,如果某一样本标签占优势那么未知点就属于该标签的类别


3. k-近邻算法实战–【基于scikit-learn库】


分类问题:from sklearn.neighbors import KNeighborsClassifier


回归问题:from sklearn.neighbors import KNeighborsRegressor


3.1 实战示例1–演示如何使用


根据一个人的身高、体重和鞋子尺码来判断性别

import numpy as np
# 构造特征数据
x = np.array([[172,60,42],
              [168,56,40],
              [189,70,44],
              [160,45,36],
              [163,50,42],
              [170,65,41]])
# 给上面的特征数据加标签
y = np.array(["男","女","男","女","男","女"])
# 构造一组未知的特征数据,用于后续预测
x_test = np.array([[175,75,43],[170,60,38],[165,50,40]])
# 导入相关的算法
from sklearn.neighbors import KNeighborsClassifier
# 1、创建算法模型,k-近邻分类器模型:n_neighbors代表k-近邻算法取的前k个邻居,默认为5,一般不超过20
knn = KNeighborsClassifier(n_neighbors=3)
# 2、用创建好的算法模型,取对已有的数据进行训练:在k-近邻里面,训练过程就是告诉knn对象,x里面的数据对应到y中代表谁
knn.fit(x,y)
# 3、根据已有的数据基础对未知的数据进行预测
# 分别拿x_test中的每一条数据和已知数据进行k-近邻运算,进而推测出每一条数据分类归属
knn.predict(x_test)
# 我们可以看到,依据该算法预测出的3组数据结果为['男', '女', '女']。
# 4、性能检测
# 此处由于未设置测试数据的标签,因此无法性能检测


预测输出的结果为:array(['男', '女', '女'], dtype='<U1')
• 1


3.2 实战示例2–鸢尾花分类


导入数据集并查看形状


# 导入sklearn的官方数据库
from sklearn import datasets
iris = datasets.load_iris()
# 提取出特征数据
data = iris.data
# 提取标签数据
target = iris.target
print(data.shape)
print(target.shape)
(150, 4)
(150,)
• 1
• 2
target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])


数据形状为:(150, 4),说明该数据集有150条数据,每条数据包含4个特征

通过打印出的标签数据,我们可以看到该标签分为3个类别:0,1,2


模型训练及预测过程


# 切分数据:将数据分为训练集和测试集,使用train_test_split方法
from sklearn.model_selection import train_test_split
# rain_test_split方法首先会把data和target随机打乱,提取出给出比例的数据(包括特征和标签)作为测试数据,下面使用的10%数据作为测试集
x_train, x_test, y_train, y_test = train_test_split(data,target,test_size=0.1)
# 创建模型
knn = KNeighborsClassifier(n_neighbors=5)
# 训练
knn.fit(x_train,y_train)
# 预测:y_为预测出的结果
y_ = knn.predict(x_test)
# 性能评测:查看准确率
knn.score(x_test,y_test)


1.0
• 1


我们可以看到模型预测出的结果准确率为100%。


用图像表征分类的过程


由于4个特征用二维图像无法表述,因此我们取前两个特征,来进行图像分类过程表述,仅用于演示分类的过程


# 取前两个特征
x_train = data[:,:2]
x_train.shape
(150, 2)
import matplotlib.pyplot as plt
import numpy as np
# 画出这150个样本对应标签的散点图
plt.scatter(x_train[:,0],x_train[:,1],c=target)
plt.show()

26ffec7d417a4555b0dfccc363cd7384.png


上图中的水平与竖直坐标表征鸢尾花数据集中的前两个特征,3种颜色的散点代表着鸢尾花的3种分类


下面我们通过KNN模型,把整个平面中所有的点根据KNN模型来划分所属类别,确定他们的范围区域。


# 测试数据是平面上所有的点(取150000个点),300*500个点:水平:500,竖直:300
# 找所有样本点的最小值和最大值,以确定坐标区域范围
xmin,xmax = x_train[:,0].min(),x_train[:,0].max()
ymin,ymax = x_train[:,1].min(),x_train[:,1].max()
# 切分,水平分500等份,竖直分300等份
x = np.linspace(xmin,xmax,500)
y = np.linspace(ymin,ymax,300)
# 把x和y组合
xx,yy = np.meshgrid(x,y)
# yy.ravel()
# 将300*500个点的坐标当做需要预测的样本,赋值给x_test
x_test =  np.c_[xx.ravel(),yy.ravel()]


x_test.shape


(150000, 2)


x_test[:5]


array([[4.3       , 2.        ],
       [4.30721443, 2.        ],
       [4.31442886, 2.        ],
       [4.32164329, 2.        ],
       [4.32885772, 2.        ]])


x_test


array([[4.3       , 2.        ],
       [4.30721443, 2.        ],
       [4.31442886, 2.        ],
       ...,
       [7.88557114, 4.4       ],
       [7.89278557, 4.4       ],
       [7.9       , 4.4       ]])


# 画出需要进行预测的15000一个样本点
plt.scatter(x_test[:,0],x_test[:,1])

72eb889ef7cf40d7b36f904b1e88058b.png

# 创建模型
knn = KNeighborsClassifier()
# 训练
knn.fit(x_train,target)
# 预测
y_ = knn.predict(x_test)
plt.scatter(x_test[:,0],x_test[:,1],c=y_)
plt.scatter(x_train[:,0],x_train[:,1],c=target,cmap="rainbow")

3713747a018247a49c88f8c308781aa8.png


通过上图我们可以很清楚的看到平面上15000个测试样本点各自所在的类别,即3种类别的鸢尾花在平面上的区域范围。


模型准确率:

# 通过训练出的模型对训练数据进行预测,得到预测准确率为83%
knn.score(x_train,target)


输出结果:0.83333333333333337


总结


本文主要介绍了以下几点内容:


  • 机器学习中K-近邻算法的原理,
  • K-近邻算法的使用步骤
  • 依据鸢尾花分类问题,详细介绍了K-近邻算法的使用。同时用图像的方式对分类过程进行了描述。





相关文章
|
14天前
|
机器学习/深度学习 算法 数据挖掘
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
|
6天前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
10天前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
9天前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
9天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
80 1
|
14天前
|
算法 安全 数据安全/隐私保护
Android经典实战之常见的移动端加密算法和用kotlin进行AES-256加密和解密
本文介绍了移动端开发中常用的数据加密算法,包括对称加密(如 AES 和 DES)、非对称加密(如 RSA)、散列算法(如 SHA-256 和 MD5)及消息认证码(如 HMAC)。重点讲解了如何使用 Kotlin 实现 AES-256 的加密和解密,并提供了详细的代码示例。通过生成密钥、加密和解密数据等步骤,展示了如何在 Kotlin 项目中实现数据的安全加密。
53 1
|
14天前
|
机器学习/深度学习 存储 算法
强化学习实战:基于 PyTorch 的环境搭建与算法实现
【8月更文第29天】强化学习是机器学习的一个重要分支,它让智能体通过与环境交互来学习策略,以最大化长期奖励。本文将介绍如何使用PyTorch实现两种经典的强化学习算法——Deep Q-Network (DQN) 和 Actor-Critic Algorithm with Asynchronous Advantage (A3C)。我们将从环境搭建开始,逐步实现算法的核心部分,并给出完整的代码示例。
28 1
|
15天前
|
算法 安全 数据安全/隐私保护
Android经典实战之常见的移动端加密算法和用kotlin进行AES-256加密和解密
本文介绍了移动端开发中常用的数据加密算法,包括对称加密(如 AES 和 DES)、非对称加密(如 RSA)、散列算法(如 SHA-256 和 MD5)及消息认证码(如 HMAC)。重点展示了如何使用 Kotlin 实现 AES-256 的加密和解密,提供了详细的代码示例。
28 2
|
14天前
|
机器学习/深度学习 算法 数据挖掘
机器学习必知必会10大算法
机器学习必知必会10大算法
|
15天前
|
机器学习/深度学习 算法 数据挖掘
【白话机器学习】算法理论+实战之决策树
【白话机器学习】算法理论+实战之决策树

相关产品

  • 人工智能平台 PAI