python工具包--Numpy小练习

简介: python工具包--Numpy小练习
import numpy as np


1.打印当前Numpy版本


print(np.__version__)


1.18.1


2.构造一个全零的矩阵,并打印其占用的内存大小


Clichong = np.zeros((5,5))
Clichong


array([[0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.]])


# 数组的数量
Clichong.size


25


# 数组每个元素的大小
Clichong.itemsize


8


# 数组的类型
Clichong.dtype


dtype('float64')


# 可以知道Clichong这个二维变量的大小
print("size:",Clichong.size*Clichong.itemsize)


size: 200


3.打印一个函数的帮助文档,比如numpy.add


print(help(np.add))


4.创建一个10-49的数组,并将其倒序排列


# arange(10,50,1)是numpy语句部分,后面的[::-1]是python语句部分,所以可以使用一句就可以实现倒序排序
Clichong = np.arange(10,50,1)[::-1]
Clichong


[49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26
 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10]
array([49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33,
       32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
       15, 14, 13, 12, 11, 10])


5.找到一个数组中不为0的索引


# 测试数组
test = np.array([2,3,5,7,0,2,0,4,2,6,0,5,26,7,0,6,0,0])
print("test.size:",test.size)


test.size: 18


# 方法1:利用where语句
a = np.where(test != 0)
print("position:",a)


position: (array([ 0,  1,  2,  3,  5,  7,  8,  9, 11, 12, 13, 15], dtype=int64),)


# 方法2:利用nonzero函数
a = np.nonzero(test)
print("position:",a)


position: (array([ 0,  1,  2,  3,  5,  7,  8,  9, 11, 12, 13, 15], dtype=int64),)


6.随机构造一个3*3矩阵,并打印其中最大与最小值


# randint创建一个取值为0-100,3x3的随机矩阵
Clichong = np.random.randint(100,size = (3,3))
print("Clichong:\n",Clichong)
# 全部元素进行对比
print("max:",Clichong.max())
print("min:",Clichong.min())
# 对列进行对比
print("max:",Clichong.max(axis = 0))
# 对行进行对比
print("min:",Clichong.min(axis = 1))


Clichong:
 [[95 15 84]
 [55 22 28]
 [ 2 29 91]]
max: 95
min: 2
max: [95 29 91]
min: [15 22  2]


7.构造一个5*5的矩阵,令其值都为1,并在最外层加上一圈0


#利用numpy的pad函数,其相关参数API文档如下,可以print(help(np.pad))来打印出来查看
Clichong = np.ones((5,5))
Clichong = np.pad(Clichong,1,mode='constant',constant_values = 0)
Clichong
#print(help(np.pad))


array([[0., 0., 0., 0., 0., 0., 0.],
       [0., 1., 1., 1., 1., 1., 0.],
       [0., 1., 1., 1., 1., 1., 0.],
       [0., 1., 1., 1., 1., 1., 0.],
       [0., 1., 1., 1., 1., 1., 0.],
       [0., 1., 1., 1., 1., 1., 0.],
       [0., 0., 0., 0., 0., 0., 0.]])


8.构建一个shape为(6,7,8)的矩阵,并找到第100个元素的索引值


# 使用unravel_index函数来找到索引值,print(help(np.unravel_index))
Clichong = np.random.randint(10,size = (6,7,8))
print(Clichong.shape)
# 100是索引值,(6,7,8)是矩阵的形状,只能写出来,不能用Clichong替代,具体参考文档
np.unravel_index(100,(6,7,8))
# print(help(np.unravel_index))


(6, 7, 8)
(1, 5, 4)


9.对一个5*5的矩阵做归一化操作


归一化的定义与功能:归一化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。首先归一化是为了后面数据处理的方便,其


次是保证模型运行时收敛加快。


# Clichong = np.random.randint(10,size = (5,5))
Clichong = np.random.random((5,5))
print("before:\n",Clichong)
max = Clichong.max()
min = Clichong.min()
Clichong = (Clichong-min)/(max-min)
print("After:\n",Clichong)


before:
 [[0.42707272 0.81047186 0.91071421 0.23840794 0.3771108 ]
 [0.90182748 0.90802103 0.61158242 0.00489321 0.21548403]
 [0.64966355 0.65816033 0.04054501 0.00760435 0.44263836]
 [0.84498916 0.47003901 0.77073106 0.38147171 0.50009968]
 [0.65061004 0.79489827 0.84465063 0.94343758 0.4159035 ]]
After:
 [[0.4498237  0.85832772 0.96513392 0.24880521 0.3965903 ]
 [0.95566528 0.96226438 0.64641505 0.         0.22438025]
 [0.68698972 0.69604287 0.03798627 0.00288866 0.46640859]
 [0.89510521 0.49560342 0.81598471 0.40123676 0.52763245]
 [0.68799819 0.84173438 0.89474451 1.         0.43792313]]


10.找到两个数组中相同的值或者是相同值的位置


# 定义两个随机数组取值为0-10,数目为30个
a = np.random.randint(0,20,10)
b = np.random.randint(0,20,10)
print("a:",a)
print("b:",b)


a: [18  1 10 15  6  8 16 10 12 14]
b: [ 5 12  5  0 19  5 18 15  0  0]


# 找出两个数组相同值的位置
np.where(a == b)


(array([], dtype=int64),)


# 找出两个数组中共有的值,利用intersect1d函数
np.intersect1d(a,b)


array([12, 15, 18])


11.得到今天 明天 昨天的日期


# 利用datetime64函数 print(help(np.datetime64))
today = np.datetime64('today','D')
yesterday = np.datetime64('today','D') - np.timedelta64(1,'D')
tomorrow = np.datetime64('today','D') + np.timedelta64(1,'D')
print("today:",today)
print("yesterday:",yesterday)
print("tomorrow:",tomorrow)


today: 2021-01-20
yesterday: 2021-01-19
tomorrow: 2021-01-21


12.得到一个数的整数部分


# 定义一个小数数组,范围是0-10,个数为10个
z = np.random.uniform(0,10,10)
print(z)
# 去除小数部分的函数floor
np.floor(z)


[9.78465077 2.07504483 8.34613494 2.81205194 2.97713123 0.26551266
 6.33476669 6.13764817 5.38474901 0.57251498]
array([9., 2., 8., 2., 2., 0., 6., 6., 5., 0.])


13.构造一个数组,让它不能被改变


Clichong = np.array([1,2,3,4,5,6,7,8,9,0])
# 关闭可改标志
Clichong.flags.writeable = False
Clichong[1] = 0


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-59-7fa6a686b7d3> in <module>
      2 # 关闭可改标志
      3 Clichong.flags.writeable = False
----> 4 Clichong[1] = 0
ValueError: assignment destination is read-only


14.打印大数据的部分值,全部值(无需全部打印出来)


# 通过set_printoptions函数来设置,都只是显示6行6列
# np.set_printoptions(threshold=10000) # 这个参数填的是你想要多少行显示
# np.set_printoptions(linewidth=100) # 这个参数填的是横向多宽
np.set_printoptions(threshold=20)
z = np.zeros((15,15))
z


array([[0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]])


15.找到在一个数组中,最接近一个数的索引


# 函数argmin返回沿轴的最小值的索引。如果多次出现最小值,则索引对应于第一次出现的返回。
a = np.random.uniform(0,10)
b = np.arange(10)
print("a:",a)
print("b:",b)
# abs()的操作的去绝对值的操作,所以一个很小的负数取绝对值会变成一个很大的数
print((np.abs(b-a)))
print("最接近的索引是:",(np.abs(b-a)).argmin())
#(np.abs(b-a)).argmin()
#print(help(np.argmin))


a: 6.430836025704295
b: [0 1 2 3 4 5 6 7 8 9]
[6.43083603 5.43083603 4.43083603 3.43083603 2.43083603 1.43083603
 0.43083603 0.56916397 1.56916397 2.56916397]
最接近的索引是: 6


16.32位float类型和32位int类型转换


Clichong = np.array([1,2,3,4,5,6,7,8,9],dtype = np.float32)
print("before_type",Clichong.dtype)
Clichong = Clichong.astype(np.int32)
print("After_type",Clichong.dtype)


before_type float32
After_type int32


17.打印数组元素位置坐标与数值


# ndenumerate函数与python中的enumerate类似,reshape可以重新改变数组的结构
Clichong = np.arange(9).reshape(3,3)
for index,value in np.ndenumerate(Clichong):
    print (index,value)
print(np.ndenumerate(Clichong)


(0, 0) 0
(0, 1) 1
(0, 2) 2
(1, 0) 3
(1, 1) 4
(1, 2) 5
(2, 0) 6
(2, 1) 7
(2, 2) 8
<numpy.ndenumerate object at 0x00000270CE55DA88>


18.按照数组的某一列进行排序(比较抽象,需要多看几遍)


# 按照第二列升序
Clichong = np.array([[1,2,4],[3,5,2],[4,3,1],[2,4,0]])
print(Clichong)


[[1 2 4]
 [3 5 2]
 [4 3 1]
 [2 4 0]]


# 方法:lexsort函数
# 其中的 1 表示升序; 若是是 -1 则表示降序
index = np.lexsort([1*Clichong[:,1]])
print("index:",index)
Clichong[index]


index: [0 2 3 1]
array([[1, 2, 4],
       [4, 3, 1],
       [2, 4, 0],
       [3, 5, 2]])


# 方法2:argsort函数
# z[z[:,1].argsort()]
print("index:",Clichong[:,1].argsort())
Clichong[Clichong[:,1].argsort()]


index: [0 2 3 1]
array([[1, 2, 4],
       [4, 3, 1],
       [2, 4, 0],
       [3, 5, 2]])


19.统计数组中每个数值出现的次数


在python中,统计数值出现的次数有直接的函数来完成,不需要再自己写一个复杂的函数


Clichong = np.array([1,0,1,0,1,2,0,2,3,3,4,5,8])
print(np.bincount(Clichong))


[3 3 2 2 1 1 0 0 1]


20.找到一个数组中最常出现的数字


Clichong = np.array([1,0,6,6,1,0,1,6,2,6,0,2,3,0,6,3,4,6,0,5,8])
# 统计数组中每个数值出现的次数
Clichong = np.bincount(Clichong)
print(Clichong)
# 返回最多出现数字的下标,也就打印出最常出现的数字
np.argmax(Clichong)


[5 3 2 2 1 1 6 0 1]
6


21.交换矩阵中的两行


Clichong = np.random.randint(10,size = (5,5))
print("Clichong_before:\n",Clichong)
Clichong[[0,1]] = Clichong[[1,0]]
print("Clichong_after:\n",Clichong)


Clichong_before:
 [[1 9 5 5 5]
 [0 5 8 2 9]
 [7 0 3 8 0]
 [3 5 0 7 3]
 [1 5 3 4 3]]
Clichong_after:
 [[0 5 8 2 9]
 [1 9 5 5 5]
 [7 0 3 8 0]
 [3 5 0 7 3]
 [1 5 3 4 3]]




目录
相关文章
|
7天前
|
JavaScript 前端开发 开发者
探索 DrissionPage: 强大的Python网页自动化工具
DrissionPage 是一个基于 Python 的网页自动化工具,结合了浏览器自动化的便利性和 requests 库的高效率。它提供三种页面对象:ChromiumPage、WebPage 和 SessionPage,分别适用于不同的使用场景,帮助开发者高效完成网页自动化任务。
52 4
|
17天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
35 2
|
23天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
29 3
|
25天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
49 5
|
24天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
40 2
|
29天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
30 2
|
29天前
|
C语言 开发者 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第21天】在Python的世界里,代码的优雅与效率同样重要。列表推导式(List Comprehensions)作为一种强大而简洁的工具,允许开发者通过一行代码完成对列表的复杂操作。本文将深入探讨列表推导式的使用方法、性能考量以及它如何提升代码的可读性和效率。
|
1月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
49 2
|
26天前
|
C语言 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第24天】在Python编程的世界中,追求代码的简洁性和可读性是永恒的主题。列表推导式(List Comprehensions)作为Python语言的一个特色功能,提供了一种优雅且高效的方法来创建和处理列表。本文将深入探讨列表推导式的使用场景、语法结构以及如何通过它简化日常编程任务。
|
1月前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--进阶
Python数据分析篇--NumPy--进阶
18 0
下一篇
无影云桌面