Github 2024-08-01 开源项目月报 Top17
根据Github Trendings统计,2024年8月共有17个项目上榜。按开发语言分类,项目数量如下:Python项目6个,非开发语言项目与TypeScript项目各4个,JavaScript项目3个,Java、Go及Vue项目各1个。其中,免费编程学习平台freeCodeCamp.org以381,011个Star数领先,提供全栈网页开发和机器学习课程。其他项目涵盖编程书籍、API集合、低代码开发平台等多种资源。
通义语音大模型评测:CosyVoice与SenseVoice
随着人工智能技术的不断发展,语音生成和理解模型在各个领域得到了广泛应用。本文将评测两个由FunAudioLLM团队开发的多语言语音模型——[CosyVoice](https://github.com/FunAudioLLM/CosyVoice)和[SenseVoice](https://github.com/FunAudioLLM/SenseVoice),并结合阿里云开发者社区的相关资源,探讨其在实际应用中的表现。
探索通义语音团队的创新之作 —— FunAudioLLM模型评测
随着人工智能技术的飞速发展,语音识别和语音合成技术在各个领域得到了广泛应用。阿里云推出的“通义语音大模型FunAudioLLM”作为最新的语音处理技术,备受业界关注。本次评测将深入探讨通义语音大模型的功能、性能及其在实际应用中的表现。
通义万相AIGC技术测评报告
**摘要:** 通义万相是阿里云的AI绘画模型,提供清晰的部署指南和易用的API,适合新手。资源部署耗时约10分钟,API响应快,支持多种风格图片生成,适用于广告、媒体等领域。产品性价比高,功能包括文本到图像转换等,但仍有改进空间,如增加服装纹理选项、互动功能和更多API接口。建议完善功能、加强推广和降低成本以吸引更多用户。[链接](https://developer.aliyun.com/topic/tongyi-wanxiang?spm=a2c6h.27063436.J_6978680750.5.3a774f461hv8qD)
AI 提示词模板相关的架构设计
现在很多企业纷纷研发大语言模型以解决业务问题。提示词在与模型交互中起到关键作用。为优化提示词模板的修改、提高渲染效率及确保安全性,架构设计注重可修改性、安全性、可靠性和性能。设计包括:将提示词存储在OSS以方便修改和版本控制;使用本地缓存提升读取性能;模板引擎增强灵活性;秘钥安全存储在加密系统中;并通过配置中心动态调整。此设计旨在提供高效、安全且可靠的AI交互体验等。
给大模型“上上价值”:用PPO算法让AI更懂你的心
本文深入浅出讲解PPO算法——大模型“价值观对齐”的核心引擎。以教育孩子为喻,解析其“剪切更新”“优势估计”“KL约束”等机制,涵盖原理、实战(数据准备→奖励建模→五步微调)、避坑指南及DPO等前沿方向,助你让AI既聪明又懂你。(239字)
数字化签约产品助力企业
迈瑞医疗三季度或迎转机,企业增长难题凸显。数字化签约产品AIGEO依托至信链存证,15秒极速签署,多端适配、司法认可,助力企业提效降本。智能技术正重塑医疗、金融、制造等领域,AI赋能成关键。政策推动下,技术创新驱动业务新增长。
支持向量机深度解析:从数学原理到工程实践的完整指南
蒋星熠Jaxonic,机器学习实践者,痴迷于SVM的数学之美与工程应用。擅长通过核技巧解决非线性问题,在文本分类、图像识别等领域积累丰富经验。倡导理论与实践结合,致力于构建高效、可解释的AI模型。
【云故事探索】NO.17:国诚投顾的云原生 Serverless 实践
国诚投顾携手阿里云,依托Serverless架构实现技术全面升级,构建高弹性、智能化技术底座,提升业务稳定性与运行效率。通过云原生API网关、微服务治理与智能监控,实现流量精细化管理与系统可观测性增强,打造安全、敏捷的智能投顾平台,助力行业数字化变革。
DeepSeek过时了?全网刷屏的Manus到底是什么?这样写申请秒过审核
Manus(官网:[https://manus.im/](https://manus.im/))是一个通用AI智能体,能够理解用户需求并主动完成任务,如筛选简历、研究房产和分析股票等复杂工作。其独特之处在于“知行合一”,不仅能思考还能交付成果。目前处于内测阶段,邀请码稀缺,申请需详细说明使用目的和技术背景。通过官方审核后,用户可登录体验这一创新工具。
免费+数据安全!手把手教你在PC跑DeepSeek-R1大模型,小白也能秒变AI大神!
本地部署AI模型(如DeepSeek R1)保障数据隐私、节省成本且易于控制,通过Ollama平台便捷安装与运行,结合可视化工具(如Chatbox)及Python代码调用,实现高效、个性化的AI应用开发与使用。
为什么自己写的算法备案文档越改问题越多?
算法备案文档撰写中,许多开发者遇到越改问题越多的困境。主要原因包括:缺乏明确指导标准、对算法理解不深、部门间沟通协作不足、审核反馈机制缺失及撰写人员专业性不足。为解决这些问题,建议深入学习备案要求、加强算法研究、建立有效沟通机制、严格审核反馈,并寻求专业人士帮助。通过这些方法,可以提高文档质量,确保顺利通过审核。
Workforce 应用示例:黑客松评审团
本文展示了使用CAMEL多智能体系统的Workforce模块创建一个黑客松评审团,通过多个性格各异的智能体协作,对项目进行评审。系统设置了具备不同人格和评审标准的智能体,如注重技术细节的工程师和追求创新的创业者。 评审团对一个基于CAMEL-AI的个性化学习助手项目进行了评价,该项目致力于解决教育个性化不足的问题。智能体们一致认为项目技术扎实、创新性强,但部分功能尚待完善。 文章展示了Workforce模块在复杂任务处理中的高效性,并鼓励将该示例扩展到更多需要多样化视角的应用场景。
AI 编码助手:编程路上的得力伙伴
在数字化浪潮中,AI编码助手成为开发者不可或缺的工具。它通过代码生成与补全、优化与规范、错误检测与调试等功能,大幅提升编程效率和代码质量。从需求分析到部署,AI助手全程助力,确保项目顺利进行。尽管不能替代开发者创造力,但它无疑是编程道路上的得力伙伴,推动软件开发不断创新。
Way To Prompt系列(1): 为什么大模型连"Strawberry"的"r"都数不对?一招“理由先行”显著提升模型思考能力
本文将从两个常见的大模型翻车问题入手解析这些问题背后体现的大模型技术原理(Tokenization与预测下一个Token),并解释了为什么会导致这些问题,接着我们利用CoT(思维链)方法解决这些问题并基于上述原理试图剖析CoT方法起作用的可能原因,最后提出【理由先行】风格这一简单有效的Prompt Trick。
Java“NoSuchProviderException”解决
“NoSuchProviderException”是Java中的一种异常,通常在尝试使用未安装或未正确注册的安全提供者时抛出。解决方法包括确保所需的安全提供者已正确安装和配置,或在代码中显式添加提供者。
基于RAG和LLM的水利知识大语言模型系统开发有感
在数字化时代,水利行业的智能化管理尤为重要。本文介绍了基于大语言模型(LLM)和检索增强生成(RAG)技术的水利知识问答系统的开发过程。该系统结合了前沿AI技术和水利专业知识,通过构建全面的水利知识库,优化用户体验,确保系统的灵活性和可扩展性。项目展示了AI技术在垂直领域的巨大潜力,为水利行业的智能化发展贡献力量。
阿里云AI大模型助力客户对话分析——全方位提升服务与体验
随着数字化转型的推进,企业愈发重视客户互动数据的价值。阿里云推出了一套基于AI大模型的客户对话分析解决方案,通过自动化手段分析大量客户对话数据,提取有价值信息,优化服务流程,提升客户体验。本文将结合技术文档和实际体验,全面评测这一解决方案。
阿里通义灵码的最佳实践
上周首次尝试了阿里巴巴的通义灵码AI插件,体验良好。该插件体积适中,约5.8M,适合项目开发使用。其@workspace和@terminal功能强大,能快速帮助开发者熟悉新项目结构,提供智能代码导航、搜索、优化及错误提示等服务,显著提升开发效率与代码质量。实践证明,通义灵码在加速项目理解和新需求实现方面表现出色,是开发者的得力助手。
大模型赋能智能座舱,NVIDIA 深度适配通义千问大模型
9月20日杭州云栖大会上, NVIDIA DRIVE Orin系统级芯片实现了与阿里云通义千问多模态大模型Qwen2-VL的深度适配。阿里云、斑马智行联合NVIDIA英伟达推出舱驾融合大模型解决方案,基于通义大模型开发“能听会看”的智能座舱助理,让车内人员通过语音交流就能操作座舱内的各类应用,享受极致丰富的交互体验。
【Prompt Engineering:自我一致性、生成知识提示、链式提示】
自我一致性是提示工程技术之一,旨在改进链式思维提示中的解码方法。通过少样本CoT采样多个推理路径并选择最一致的答案,有助于提升涉及算术和常识推理任务的性能。例如,在解决年龄相关问题时,通过多次采样并挑选多数答案来提高准确性。此外,生成知识提示技术可预先生成相关信息辅助模型做出更准确预测,进一步优化模型表现。链式提示则通过将复杂任务分解为多个子任务来逐步处理,从而提高模型的透明度和可靠性,便于定位和改进问题。
Github 2024-07-15 开源项目周报 Top15
根据 Github Trendings 的统计,2024年7月15日当周共有15个项目上榜。以下是按开发语言分类的项目数量汇总:Python项目5个,非开发语言项目4个,JavaScript项目3个,TypeScript项目2个,Go、Solidity和Java项目各1个,Rust项目1个。此外,介绍了多个值得关注的项目,包括免费编程学习平台 freeCodeCamp.org、免费编程书籍和学习资源清单、免费 API 集合等,涵盖了不同编程语言和技术领域。
Github 2024-07-01开源项目月报 Top15
根据Github Trendings统计,2024年7月有15个热门项目。按开发语言分类,项目数量如下:Python项目6个,JavaScript项目3个,C++项目2个,PHP、Blade、非开发语言、C#、Lua、Go、MDX、Jupyter Notebook项目各1个。这些项目涵盖技术重建指南、生成式AI教程、模块化GUI、云平台、数据库系统、视频生成模型、AI框架、Shell提示渲染器、Neovim配置、PDF转Markdown工具及语音识别等多种领域和技术。
Github 2024-06-01开源项目月报 Top20
根据Github Trendings统计,2024年6月共有20个项目上榜。按开发语言分类,项目数量如下:Python和TypeScript项目各有8项,Jupyter Notebook 3项,HTML、Java、Rust、Vue 和 Batchfile 各1项,C和Svelte也分别有1项。这些项目涵盖多种领域,从AI驱动的应用到游戏开发,反映了开源社区的多样性和创新力。
阿里云服务器部署Jupyter私房菜
在阿里云ECS上,选用2核2G的配置,安装Ubuntu 22.04,然后部署Nginx作为Jupyter Notebook的反向代理。安装Miniconda3,配置清华TUNA镜像源以加速下载。创建Jupyter Notebook,设置密码和远程访问,通过Nginx配置实现安全访问。整个过程包括安装Jupyter,修改Nginx配置,最后通过浏览器访问 Notebook。
【平衡点:解锁中国大模型开源闭源的新时代】关于大模型是否开源的分析
本文探讨了开源与闭源软件在大模型技术发展中的角色,深入比较了两者在质量、安全、产业化、适应性和可靠性等方面的优缺点。开源软件得益于全球开发者社区,通常在创新和适应性上表现出色,但安全性和质量可能因分散的开发而有所波动。闭源软件则在代码质量和安全性上有一定优势,但可能限制了产业的协作与创新。 在商业模式方面,开源通常依赖服务和支持盈利,闭源则通过软件授权和订阅服务获利。开源模式的市场竞争更激烈,闭源模式则更注重市场份额和控制。企业需要根据自身情况选择合适的战略,有些可能会采用
JavaWeb手写Tomcat底层机制
综上所述,Tomcat作为JavaWeb应用的Servlet容器,在接收请求、解析请求、查找Servlet、创建请求和响应对象、请求分发、生成响应、连接管理等方面起着关键作用。其底层机制通过Socket通信、Servlet生命周期管理、线程池、Session管理等技术实现了整个JavaWeb应用的运行。
【大模型】大型模型飞跃升级—文档图像识别领域迎来技术巨变
通过对GPT-4V和文档识别领域的深入分析和思考,为OCR文档识别领域的研究开辟了新的方向。需求不断增长的背景下,提高识别精度和处理效率成为了迫切需要满足的新应用标准。在这一背景下,出现了: 素级OCR统一模型、OCR大一统模型、文档识别分析+LLM(LanguageModel)等应用的新方向。下面来详细看一下。
AIGC-知识库-LLM:从0开始搭建智能问答钉钉机器人
本文描述在阿里云上从0开始构建个人/企业专属,具备私域知识库+LLM智能问答钉钉机器人。知识库技术方案使用了Lindorm AI数据服务平台知识库能力,LLM使用了开源ChatGLM2-6B。
使用 LangChain 和 Node.js 提取数据
在本篇文章中,将分享如何使用 LangChain(一个用于构建 AI 驱动应用程序的框架)通过 GPT 和 Node.js 提取和生成结构化 JSON 数据
构建AI助手:利用阿里云云函数计算FC快速构建“通义千问”
本文介绍了如何利用阿里云云函数计算(FC)快速构建一个强大的通义千问AI助手。通过阅读本文,您将能够利用阿里云云函数计算(FC)快速体验义千问AI助手。
达摩院智能对话技术升级-更人类,更温暖-通义对话大模型SPACE加持下的新一代对话智能-SPACE-D:可信赖的文档对话
达摩院智能对话技术升级-更人类,更温暖-通义对话大模型SPACE加持下的新一代对话智能-