暂无个人介绍
大家好,我是爱学习的小熊妹。经常有小伙伴在公众号后台私信问我一些问题,但是问题实在太长了,微信后台又不能长期保存,因此很不方便交流。 为了更好地解答大家的问题,推荐一个超有料的知识星球“接地气的陈老师”给大家。里边已经积累了150+的干货内容,还有众多经验丰富的前辈做嘉宾,解答疑问。
经常有小伙伴吐槽:“名曰数据分析师,实际上就是跑数机器,咋样才能进步呀!”额,大家都是从查数姑过来的,莫慌。 不过自从我开始带小伙伴独立负责工作以后,越来越感觉到:有些能力是高级数据分析师才要求的,在每天写sql里没得锻炼。具体是哪些?今天简单分享一下。
今天分享数据分析师必备的工作能力——需求梳理。需求梳理很不起眼,甚至很多小伙伴感受不到他的存在。但它结结实实影响到大家的下班时间和绩效。
上期分享了数据分析师必备能力:打标签。这次分享一个更高级能力:构造标签体系。在提升能力的顺序上,当然是先会打一个标签,再会搞整个体系了。
上期分享了数据分析师必备技能:构建指标体系。这次分享一个和指标体系同等重要的技能:构造标签(俗称:打标签)。打标签能力,是区分真数据分析师和sqlboy 的重要能力
有小伙伴问:除了分析方法,数据分析师还要掌握哪些技能?其中最重要的,可能就是梳理指标体系了。在招聘的时候,这是数据分析师的一项硬技能要求。 那么该如何梳理呢?今天简单分享一下。
今天跟大家分享的是漏斗模型。漏斗模型,是一个大家能在各式各样的场合听到,但是总是感觉没讲到位的模型,今天简单分享一下。
总有同学们在抱怨:“说的是做产品分析,可实际上每天都在埋点,建表,写SQL,对口径,找bug,我分析啥了?到底啥是产品分析?”今天简单分享一下。 所谓产品分析,特指对互联网产品:APP/小程序/H5一类的分析。不是传统企业口中的“产品”哦(传统企业的,参见之前分享的《商品分析》)。 传送门:一文看懂:商品分析如何做?
今天继续来谈数据分析八大模型系列。今天分享的,是一个原理很简单,但是应用很广泛的模型:同期群模型。在商品分析、用户分析、渠道分析上,都用得着哦。
今天分享的是商品分析。在过去,商品分析曾经是最重要的分析内容,但现在已经让位给推广分析了,一起来看下吧。
今天跟大家分享的是一个经常被提及,但是价值被严重低估的模型:RFM模型。
用户分析,是当前数据分析领域最热门的话题了。不管是互联网企业还是传统企业,都在问题: 我的用户是谁? 用户从哪里来? 用户做了什么? 用户会到哪去?
上一篇《一文看懂:搭建活动分析体系》分享以后,有小伙伴问:那做活动分析,是不是也有模型呢?答:不但有,而且很多。而且互联网大厂尤其热衷于创造新模型,以至于每年都有新词冒出来,诸如:AIPL、FAST、GROW、RISE、5A……等等,看得人头晕目眩。今天就跟大家简单聊聊这些营销模型背后的底层逻辑。
要问互联网上啥最吸引人,当然是活动啦!各种优惠让人眼花缭乱,以至于很多人专门游走于各个平台“薅羊毛”。活动只是互联网运营一部分工作,却是最烧钱,最吸引眼球,最让人纠结的一部分。今天就简单分享一下:活动分析该怎么做。
之前分享了销售分析的基本做法,今天来分享一个销售分析最常用的模型:人货场模型。这是来源于传统零售业的经典分析模型,在电商环境里其实也能用。大家一起来看一下。 传送门:一文看懂:销售数据分析怎么做?
今天跟大家分享数据分析里最高频的一个工作:销售分析。不管是实打实挣钱的公司,还是指望上市圈钱的公司,销售业绩都是领导们最看重的指标。 很多人从事数据分析工作,也是从基础的“销售统计专员”做起的。今天就简单分享下,销售分析该如何做。
上一篇分享了经营分析的基本思路,很多小伙伴习惯性的问:那做经营分析有没有什么模型呢?有的,可以参考OGSM模型,今天跟大家简单分享一下。
今天为大家分享的,是数据分析的经典分枝——经营分析。经营分析非常有历史了,早在“数据分析”这个名词火起来之前就已经存在了。今天一起来看看。
一提起数据分析,很多人都会自然而然联想到Excel,SQL,Python等工具。搞得很多小伙伴深陷书海无法自拔,经常问:到底要学到什么程度,才算能懂呀? 今天先从最简单的Excel讲起吧。
一提到用户画像,很多人直观地会想到:通过用户画像分析出用户偏好。到底用户偏好该如何做分析,今天简单分享下,给大家一个懒人攻略。
上一篇为大家分享了行业分析的基本做法(一文看懂:行业分析怎么做?),很多小伙伴在问:有没有个分析模型可以用?今天介绍一个行业分析的业务模型:PEST模型。
在工作和面试中,很多小伙伴会遇到“对XX行业进行分析”的要求。一听“行业分析”四个字,好多人会觉得特别高大上,不知道该怎么做。今天给大家一个懒人攻略,小伙伴们可以快速上手哦。
一提起数据分析,很多人都会联想到“分析模型”,似乎分析模型是个很厉害又很神秘的东西。那做数据分析到底需要懂多少模型?今天简单跟大家分享一下。
小伙们经常听到这样一句话:“数据分析要懂业务!”那到底啥玩意才是业务?懂多少才算懂业务?今天跟大家分享一下。
之前分享了ABtest的基本原理,有小伙伴问:那如果我不止AB两个版本,而是有ABC三个版本做测试,还能用ABtest方法吗?当然能用!只是使用的统计学方法换成了:方差分析,今天简单跟大家分享一下。
在工作中,经常有小伙伴遇到:做数据分析没思路的问题。如果是日常工作还好,可以对着以前的报表抄一份。但是面试时遇到没思路的问题,可能就含恨而终了。今天就分享下,如何快速找到思路。 比如被面试官问道:“你要如何分析一款APP”。此时忽然脑子短路,不知道从何说起,该怎么办呢?别着急,分五步,一步步来。
今天继续分享九大数据分析方法系列。上一篇说到,当我们要分析的问题,受到太多因素的影响的时候,经常会不知道从哪里下手。这时候,需要把各种影响因素梳理清楚,就需要用到MECE
今天继续更新九大数据分析方法系列。在工作中,我们经常会问: 下雨和业绩下降有多大关系? 销售上涨和新品上市有多大关系? 营销投入与业绩产出有多大关系? 这些问题,都有一个基础分析方法有关:相关分析法。
总有小伙伴想看分析模型,我们就从最简单的回归分析模型讲起。回归分析是所有分析模型里最浅显,最容易懂的,并且回归分析有很多变化形态,能适用于很多问题场景。今天就一起来看一下。
大家好,我是爱学习的小熊妹。 今天继续介绍九大数据分析方法系列。上一篇我们提到,如果想找两个指标之间相关关系,可以用相关分析法。但很多时候,我们想找的关系,不能用指标来表达。 比如: 是不是社区店比步行街店,生意更好? 是不是私域流量比公域流量,转化更佳? 是不是刮风下雨比晴空万里,销售更好? 社区店/私域流量/刮风下雨,很难用一个数据指标来衡量。但这些因素,又确实会对企业经营产生影响,该怎么分析呢?这就需要采用:标签分析法
今天继续跟大家分享的是九大数据分析方法系列。今天介绍的是漏斗分析法,漏斗分析法是一种基础的,处理多个指标分析问题的方法,有很多应用场景。
很多小伙伴会问:做数据分析,需要懂多少统计学知识?今天简单跟大家分享一下。
大家好,我是爱学习的小熊妹。 今天继续跟大家分享:九大数据分析方法系列。之前已经分享过: 周期性分析法 结构分析法 矩阵分析法 👆点击可进行阅读哦~ 这三种方法,都是只对一、两个指标进行分析。小伙伴们肯定会问:那如果有好几个指标,要怎么进行分析呢?答:当遇到好几个指标的时候,得先分清这些指标间的关系。
大家好,我是爱学习的小熊妹。 今天继续跟大家分享:分层分析法。这个方法也非常简单实用,即可以弥补矩阵分析法的缺陷,又是用户分群,商品ABC分析的基础,很实用哦。
今天跟大家分享的是万众期待的ABtest原理。其实ABtest的难度主要在开发上:开发新版本、进行测试、测试数据回传保存等等。在数据上,ABtest原理很简单,只要上一篇《3分钟,看懂假设检验》认真看了的话,能很轻松get哦!
今天继续跟小伙伴们分享九大数据分析方法系列——结构分析法。结构分析法是一种很简单的方法,也是数据分析是否入门的重要标志。一般没入门的人,对分析方法的掌握就到此为止了。并且没入门的人,会给结构分析法起很多高大上的名字,类似:拆解法/拆分法 一类。
今天来说说假设检验。这是个古老的方法,近年ABtest大行其道,使假设检验方法迎来了新一波文艺复兴,搞得很多小伙伴都在问:如何做假设检验?那一堆似懂非懂的统计符号啥意思? 今天小熊妹帮大家整理了一个懒人攻略,大家抄起来用即可。可能有描述不准确的地方,大神们勿喷哦。
今天继续分享九大数据分析方法系列:矩阵分析法。矩阵分析法是在各路数据分析文章中,出现频率最高的词。甚至有不懂行的小白把它捧到“核心思维”,“底层逻辑”的高度。哈哈,才没有那么神呢。
很多小伙伴想知道:做数据分析,到底要懂多少统计学?小熊妹很认真地做一个懒人攻略,不讲复杂的理论,直接讲实际操作,希望能帮助到大家哦。 如果要讲统计学,第一个概念要从区间估计讲起,这是后续很多方法的基础。 一听:“区间估计”的名字,很多小伙伴会一脑袋问号: 为什么要“估计” 为什么还要有“区间” 今天的分享就从这里开始
有小伙伴问:能不能系统介绍下数据分析方法。今天它来啦!数据分析常用的方法有九种,今天先介绍第一种,操作上最简单的:周期性分析法。它是新人们避免犯小白错误的最好方法。 做数据的新人最容易犯啥错?当然是一张嘴就被大家笑话:连这个常识都没有!
经常有小伙伴问:天天看你们说互联网数据分析,到底互联网数据分析在分析什么?今天给大家分享一下哦。 首先,所有的数据分析,都是围绕三个问题展开的: 监控现状,发现问题 分析原因,评估效果 预测走势,测试方案 但是在不同的场景,解决的问题不一样。 因此想知道互联网数据分析在分析什么,得弄清楚,所谓的“互联网”到底有哪些场景。笼统地说,有7个大场景。
在工作中,我经常需要对关键业绩指标的波动分析原因,这也是运营、产品的小伙伴很头疼的问题,总感觉分析原因的时候千头万绪。为了能按时下班,我整理了一套非常简单使用的方法。今天就结合一个之前做过的真实问题(数据已脱敏,改得妈都不认识了),给大家分享一下。 问题场景:某负责电商业务线的老板忽然发飙了, 把几个运营小组的领导叫去一顿批:“为什么3月份消费人数多了那么多,业绩反而下降了,去分析分析”……于是,我就这么开始了分析之旅。要从哪里搞起呢?
现在有关数据分析的文章满天飞,很多小伙伴好奇:到底数据分析是做什么的?今天小熊妹给大家捋一捋,就拿几个大家常问的问题举例吧。
之前和大家分享了趋势型预测方法,很多小伙伴想看躺平型与周期型预测,今天他们来了。 首先回顾一下,常见的数据走势有三种: 趋势型:连续发展的态势。 躺平型:变动较少,一条直线。 周期型:有规律的周期性波动。
618要来了,小伙伴是不是都在忙着加班,备战活动呢?特别是活动监控,每次活动领导都一次次催监控数据,搞得人紧张兮兮。 那么,到底活动监控该怎么做呢?就拿上个月我司刚做过的一个小活动举个例子吧。这个活动是一个很简单的全民派福利活动。从5月10日开始到5月31日,用户登录APP后可以领一张优惠券,优惠券在5月内都有效,满400减80呢。
在各类型数据分析中,事前策划分析,是最容易让人摸不着头脑的。经常遇到运营的小伙伴跑来问:“小熊妹,领导让分析分析用户,找找营销机会,这怎么找呀??” 实际上,这种情况也确实很难办。俗话说:“字数越少,问题越大”。 如果在事前策划的时候,领导有很清晰的指示,比如:“对过去一年内累计消费1万元以上,且最近30天都没有登录的用户,每人免费送一个礼品,在登录APP后可领取”那分析就简单多了。只要按照条件,把符合领取资格的人的名单统计出来即可。 但如果没有这么细的要求,甚至只有一句话:分析分析看看。那很有可能我们辛辛苦苦做出来的东西,领导也不满意,最后白费力气。
大家都知道,小熊妹最怕下班的时候被别人长长的一声“小熊妹~~”喊住,所以,这天我在收拾包包补个妆的时候,领导又在背后喊我了图片 这次接到的任务很简单,两个字:预测。建预测模型,是件很复杂的事。领导轻飘飘一句:“做个预测看看”,不光搞得运营的小伙伴们晕头转向,也大量挤占我的煲剧时间。必须不能忍。因此,今天整理了快速预测的方法,只用excel就能搞掂哦。
大家好,我是爱学习的小xiong熊妹。 才6月第一周,我的领导,作为大厂的得力基层领导,就迫不及待地让我开始写上半年复盘报告了,我真的是一口气差点上不来~ 我们知道,做数据分析一般有3个场景: 事前:策划类分析、预测类分析 事中:监控类分析、原因类分析 事后:总结性分析 到了6月份,有很多的半年总结、季度总结要做,618大促销的总结也要做。估计近期事后总结性分析报告(或者叫复盘报告)非常多,今天小熊妹就为大家整理了复盘报告的极简分析思路,帮助还在苦苦憋报告的小伙伴们早日脱离苦海哦。
大家好,我是爱学习的小熊妹。 上周五,阳光很好,微风很好,无惊无险又到六点,小xiong熊妹美美地在座位上补了个妆,拿起小包包,正打算去撸麻辣火锅的时候,听到了最怕听到的话—— 小熊妹,麻烦给个数,领导马上就要看…… 我整个人顿时就不好了!我的火锅,我的小伙伴,我的奶茶,我的电影!
大家好,我是爱学习的小熊妹。做运营的小哥哥小姐姐们,经常要做各种汇报ppt。其中怎么画图表,经常是很纠结的一件事。小熊妹也不是专业科班出身的数据分析师,但还是认真的总结了数据可视化的基本技巧。