高级数据分析师,必备这7大能力

简介: 经常有小伙伴吐槽:“名曰数据分析师,实际上就是跑数机器,咋样才能进步呀!”额,大家都是从查数姑过来的,莫慌。不过自从我开始带小伙伴独立负责工作以后,越来越感觉到:有些能力是高级数据分析师才要求的,在每天写sql里没得锻炼。具体是哪些?今天简单分享一下。

一、能力VS知识


什么是能力?举个简单的例子:


1、知识(knowledge):统计学讲的回归分析方程 y=ax+b,以及SST、SSR、SSE、R平方等概念是知识。知识是有科学理论基础的,有出处的。


2、技能(Skill):敲出来:from sklearn.learn_model import LinearRegression 是一个技能。技能可以通过操练提高,而且使用技能的时候,你完全不用懂背后的科学原理,会操作就行。


3、能力(Ability):运营部门想预测下下个月的GMV,知道拿几个指标,用回归分析来预测,这是一种能力。能力是在现实工作场景中,因地制宜地使用知识和技能。

 

能力是很重要的!因为现实中工作场景很复杂,比如预测下个月GMV,有好多种方法可以用:时间序列预测、滚动预测、业务模型预测、回归模型预测、拍脑袋……,不同的方法,需要的数据不一样,产生的效果也不一样,因此需要具体思考。

 

并且,做工作不是做学术研究,还得考虑以下跟人有关的复杂情况,因此更得会随机应变见风使舵了。


  • 业务部门能不能理解
  • 领导接不接受结果
  • 领导想手动调整下结果……

 

那么,哪些能力是必备的呢?从完成一个项目的角度,我觉得有这7种能力。

二、七大能力


完成一个数据分析项目,至少有4步:


1、明确目标

2、选择数据

3、进行分析

4、汇报结果

 

为了做好项目,则至少需要7大能力(如下图)


image.png


能力一:理解业务。

 

这是所有工作的基础,想做分析,至少得知道:


1、业务流程是啥

2、业务方会做哪些动作

3、业务方期望的结果是啥


这样后续才有分析目标,才能看数据是否足够多。

 

能力二:梳理需求


这一步经常被新人遗忘,因为大家习惯了等着业务下需求单/发个邮件/打个电话/拍一下肩膀,然后要个数。从而忘记了:我们想做一个完整的分析报告,而不是跑个数呀!

 

想要做一个完整的分析,有清晰的需求是第一位的。“歪,给我个XX数!”不算是清晰的需求,只是个口头要求而已。


清晰的需求,至少得说清楚5w才行:


Who:数据使用者

When:数据使用时间

Where:数据使用场合

Why:使用数据原因

What:具体数据格式

 

特别是Why,直接和分析思路有关,要重点区分业务部门想:


  • 要做监控、找原因、还是做预测?
  • 如是监控,是否业务已上线?什么时候上?
  • 监控数据是否涉及埋点、系统对接?
  • 找原因,是否有假设?假设是什么?
  • 做预测,是否有假设?假设是什么?

 

这样才能避免,辛辛苦苦跑一堆数,被批斗:“没啥用”“我早知道了”的问题。

 

能力三:梳理指标体系

 

指标体系是数据分析的左手。梳理清楚一个项目需要哪些指标,才好继续深入。有些小伙伴很偷懒,总想着找一份“完整的”指标体系,熟读并背会就可以。可实际工作中,业务流程经常有变化,导致很多过程指标需要重新确认,并不是找个模板套就可以的。


image.png



并且,有些过程指标数据采集难度很大,还得考虑怎么和开发谈判,尽可能保障收集。因此梳理指标体系是个重要能力。

 

能力四:梳理标签体系

 

标签体系是数据分析右手。很多时候,业务部门想分析的对象不是指标可以描述的,比如分析“高潜力”,分析“有意向”,分析“刚需型用户”,这些都是通过标签,具象化了一个业务描述。


想要把问题分析清楚,数据分析师就得有能力打标签,有能力把一个业务场景中标签梳理清楚(如下图)。


image.png


注意!业务部门经常有一些内部约定俗成的标签说法,不同部门之间标签口径混乱是常有的事。因此真要做标签梳理,就得有谈判能力,拉各路相关方坐下来慢慢谈。

 

能力五:选择分析方法

 

开篇的例子,就是个选择分析方法的典型例子。比如:


预测类分析:n个模型可以用,用哪个?


原因类分析:从哪个角度切入?如何构建逻辑?


检验类分析:假设是什么?从哪些角度检验?


评估类分析:从哪些角度评估更合理、全面?


这些都是要考虑的问题

 

教科书上虽然有标准的方法, 但怎么结合实际,特别是怎么让业务部门配合过程,接受结果,则是个大学问。经常有一些复杂的方法,被业务部门斥责“看不懂!”“莫名其妙!”而遭受非议,所以选择分析方法,是一个重要能力。

 

能力六:设计数据实验

 

有些问题是没有历史数据可参考的,只能通过实验得到结果。而工作中的实验,又不像实验室里,可以把消费者、店铺、APP扣在玻璃罩子里隔绝外界环境,一点点测试。


因此需要结合业务流程,设计实验方法,考虑这些具体问题:


  • 做抽样实验还是全量实验?
  • 抽样方式、样本量如何设计?
  • 实验次数、实验投入如何控制?
  • 哪些影响因素要提前考虑?
  • 实验对象内部特征要不要管?

 

能力七:输出数据报告

 

很多新人有疑惑:“输出数据报告也是能力?不是有模板吗?”确实,有些公司数据报告有模板,问题是怎么把报告输出给业务,并且获得业务的点赞,真的是一个能力,还是高级能力。因为数据分析结论,会直观反应业务做的好/不好,“屁股决定脑袋”的事多的很!

 

比如:


明明活动不达标,业务非说是“自然增长率”计算不合理


明明指标不达标,业务非说是“大环境不行,不是我没做好”


明明只是小波动,业务非逼着“深入分析0.01%差异背后的深层原因”


怎么办!很难办呀!

 

所以做好汇报,是个很考验综合能力的事。


相关文章
|
3月前
|
机器学习/深度学习 自然语言处理 算法
聊天机器人开发的最佳实践:技术探索与案例分析
【8月更文挑战第22天】聊天机器人作为人工智能领域的重要应用之一,正逐步改变着人们的生活和工作方式。通过遵循最佳实践和技术探索,开发者可以开发出更加智能、高效、安全的聊天机器人产品。未来,随着技术的不断进步和应用场景的不断拓展,聊天机器人将在更多领域发挥重要作用。
|
4月前
|
数据采集 人工智能 数据可视化
「AI工程师」数据处理与分析-工作指导
**数据分析师工作指南概要** 该工作指导书详细阐述了数据分析师的职责,包括数据收集、清洗、整合处理以及分析挖掘。分析师需确保数据质量,运用统计和机器学习方法发现洞察,并通过可视化报告支持决策。此外,他们需维护高效的工作流程,使用编程工具优化处理,并遵循数据收集、分析及报告编写规范。成功执行此角色要求深厚的技术基础、沟通协作能力以及持续学习的态度。
218 1
「AI工程师」数据处理与分析-工作指导
|
数据管理 大数据
数据治理专业认证CDMP学习笔记(思维导图与知识点)- 第15章数据管理能力成熟度评估篇
数据治理专业认证CDMP学习笔记(思维导图与知识点)- 第15章数据管理能力成熟度评估篇
|
SQL Web App开发 分布式计算
数据分析高级教程(二)
数据分析高级教程(二)
103 0
|
JSON 分布式计算 JavaScript
数据分析高级教程(三)
数据分析高级教程(三)
98 0
|
数据采集 Web App开发 分布式计算
数据分析高级教程(一)
数据分析高级教程(一)
84 0
|
机器学习/深度学习 数据采集 算法
高级数据分析 | 学习笔记
快速学习 高级数据分析
327 0
高级数据分析 | 学习笔记
|
SQL 算法 数据挖掘
数据分析师7大能力:梳理标签体系
上期分享了数据分析师必备能力:打标签。这次分享一个更高级能力:构造标签体系。在提升能力的顺序上,当然是先会打一个标签,再会搞整个体系了。
502 0
数据分析师7大能力:梳理标签体系
|
人工智能 数据可视化 安全
数据时代不具备数据可视化分析能力,你怎么在工作中脱颖而出?
数据可视化和信息可视化都是可视化的一种方式,数据可视化将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像,同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。信息可视化,旨在把数据资料以视觉化的方式表现出。信息可视化是一种将数据与设计结合起来的图片,有利于个人或组织简短有效地向受众传播信息的数据表现形式。
数据时代不具备数据可视化分析能力,你怎么在工作中脱颖而出?
|
数据可视化 搜索推荐 IDE
一款具备零代码和低代码能力的大数据可视化分析平台
什么是低代码平台: “低代码开发”旨在开发人员可以通过编写少量代码就可以快速生成应用程序的一种方法。 使用低代码开发平台类似于使用IDE,因为它包含了一套可以供开发人员直接使用的功能,和一套供开发人员使用的工具。然而,它实际上能提供的远远超过一个传统的IDE。简单来说,低代码开发就是将已有代码的可视化模块拖放到工作流中以创建应用程序的过程。由于它可以完全取代传统的手工编码应用程序的开发方法,技术娴熟的开发人员可以更智能、更高效地工作,而不会被重复的编码束缚住。相反,他们可以将精力集中于创建应用程序的10%部分,并使其具有与众不同的功能。与“低代码”开发相对的另一种方式是编写数千行复杂的代码和语
一款具备零代码和低代码能力的大数据可视化分析平台