暂时未有相关云产品技术能力~
暂无个人介绍
从 Eigen3.4 开始,Eigen 发布了将矩阵或向量重塑为不同大小的便捷方法。所有的操作可以通过 DenseBase::reshaped(NRowsType,NColsType) 和 DenseBase::reshaped() 两个函数完成。这些函数并不直接改变原有的变量,而是返回一个重塑后的变量副本。
本文介绍了Eigen的归约、访问者和广播,以及它们如何与矩阵和数组一起使用。
本文介绍了几种用于初始化矩阵的高级方法。提供了有关之前介绍的逗号初始化程序的更多详细信息。还解释了如何获得特殊矩阵,例如单位矩阵和零矩阵。
本文介绍了如何使用操作运算符operator()索引行和列的子集。该 API 在 Eigen 3.4 中引入。它支持 block API 提供的所有功能。特别是,它支持切片,即获取一组行、列或元素,以及等间隔的从矩阵或者数组中提取元素。
本文介绍了块操作。块是matrix或array的部分矩形元素。块表达式既可以用作右值也可以用作左值。与Eigen表达式一样,如果让编译器进行优化,则块操作的运行时间成本为零。
与Matrix类用于线性代数计算不同的是,Array类提供了通用目的数组。此外,Array类提供了一种执行按系数运算的简单方法,这可能没有线性代数意义,例如对每一个元素都加一个常数或按系数将两个数组相乘。
本文章旨在提供有关如何使用 Eigen 在矩阵、向量和标量之间执行算术操作的概述和一些详细信息。
这是一个非常简短的Eigen入门文章。该文章有两层目的。对于想要尽快开始编码的人来说,该文章是对Eigen库的最简单介绍。你可以把该文章作为教程的第一部分,这更加详细的解释了Eigen库。看完这个教程后可以继续阅读 The Matrix class教程。
Eigen是基于线性代数的C ++模板库,主要用于矩阵,向量,数值求解器和相关算法。常用的Ceres、G2O等项目均是基于Eigen库。 本系列文章将通过官方文档带你了解Eigen。
在Eigen中,所有矩阵和向量都是Matrix模板类的对象。向量只是行数或者列数为1的特殊矩阵。