开发者社区> 【方向】> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

想学习高大上的深度学习技术么?快来看看这本书

简介: 本文简单介绍了 Goodfellow 所著的《深度学习》的主要内容,非常透彻地分析了该书的优缺点以及适用群体。想学习深度学习么?快来看看吧。
+关注继续查看

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud


作者简介:AWESOME-O

作者邮箱:awesomo2001@gmail.com

Blog:http://machinelearningagents.com/author/admin

Deep Learning MIT book

深度学习作为最近几年(准确来说是几十年)最耀眼技术之一,已经帮助研究人员和从业人员解决了大量AI领域中的许多困难问题。但是遗憾的是,深度学习作为一个新领域,直到今天都没有形成统一的规范。我推荐的这本深度学习是一本由深度学习专家I. Goodfellow,Y. Bengio和A. Courville合作的新书,是MIT的自适应计算和机器学习系列的一部分。该书填补了这一方面的空白,并取得了巨大的成功。

这本书是第一本是从深度的角度涵盖深度学习领域的书,同时,即使是初学者也可以读懂。

本书主要有三个部分。

第一部分是数学和机器学习的基本知识。新手阅读这一部分快速地补充必要的知识,老手也可以通过这一部分进行知识的回顾。该部分简单介绍了线性代数,概率论,优化(主要是梯度下降,因为它是深度学习中的主导优化算法)的基础。另外,这一部分还简单介绍了机器学习的概念。注意,机器学习的章节包含了所有的机器学习算法和相关概念,并不仅仅是深度学习的相关概念和算法。它充分调查了一个(非常)大型研究领域,解释了构建能够从数据中学习的模型所需要的最基本的概念。它包含了关于过拟合,欠拟合和机器学习算法能力的讨论。在这些基本概念的基础上,本章激励了深度学习的需,以解决传统机器学习算法的一些缺点。这是一个重要的章节,因为它提供了在机器学习领域深度学习的背景。即使您已经熟悉机器学习概念,我仍然建议您花时间阅读本章。

第二部分介绍了深度学习中的前馈神经网络,包括它的构造和训练。这一章的目标读者是深度学习方面的从业人员。这部分清楚地解释了从业人员在使用深度学习来构建精确预测系统过程中需要做的选择。而这个工作往往非常困难。

我认为这本书清晰且有效地使用深度学习来解决机器学习的问题。深度学习并不是一个黑盒子,它使用尽可能少的数据和计算能力来获得好的收益。这就是说,在第二部分中作者介绍了不同类型的隐藏和输出单元,并讨论了架构设计的重要方面。许多公开的深度学习的论文都致力于找寻一种适合当前问题的架构。这部分在早期也引入了用于训练网络的反向传播算法。如数据集增加,早期停止,辍学和最近流行的对抗训练等正则化方法在本部分中被详尽地介绍,它们都是开发人员地有力武器。作者还提供了一个很好的介绍计算机视觉中流行的卷积网络和在语音识别或一般在建模序列数据中常见的递归神经网络。本书的第2部分的最后一个章节是深度学习应用,这章的对那些寻找灵感的人非常有用。

这本书也有点美中不足,它的第二部分我不是很满意。由于它是主要面向从业人员的,因此我认为作者应该加入更多的案例来阐述这些概念。我并不是说要用特定的语言或者深度学习的框架来实现例子。我认为不依赖于任何一个框架是本书的一大优点。框架的使用往往会让读者分散注意力,而算法可能通过任何一种框架实现。我的建议是这本书可以通过一些例子来说明一些核心思想就可以了,不用太关注于实现。

第三部分也是全书的最后一个部分,它主要是关注与深度学习方面研究。它是研究人员研究热点的集合,主要包含自动编码器,蒙特卡罗方法,近似推理和生成模型等。熟悉机器学习且要么在大学学习过或者工作遇到过深度学习的人可以直接跳到这一章节。

如果你有心推动机器学习的发展,那么本书的最后八章内容将给你提供足够的养料。这就是说最后这一部分是学术界最感兴趣的,尤其是对于博士和博士后。对我们其他人来说,无论深度学习在大众媒体的流行程度如何,它仍处于起步阶段,几乎没有通用的解决方案。因此,仍然有许多问题需要我们解决。

这本的最后200页指出,那些真正理解深度学习方法的人正试图平息过去一年里围绕它的炒作。需要做的工作还有很多,我们要理性地看待炒作,因为我们不想再次经历AI的冬天。最后,本节涵盖的大量不同的主题告诉我,这本书在未来将变得过时,因为研究人员发现了新的深度学习方法并改进了现有的方法。我希望作者将继续更新这本书,以便我们对这种强大的机器学习技术的知识增加。

总的来说,深度学习这本书对无论是初学者或是从业人员甚至是研究人员都是一本不错的读物。作者下了很大的功夫深入浅出地将深度学习的知识讲解给不同基础的人。


如果感兴趣,这有书的链接

数十款阿里云产品限时折扣中,赶紧点击领劵开始云上实践吧!

以上为译文

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。

文章原标题《Book review: Deep Learning by Goodfellow, Bengio and Courville | Machine Learning Agents》,作者:Awesome-o,译者:爱小乖

文章为简译,更为详细的内容,请查看原文

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
spring学习48-属性注入注入数组和列表的说明
spring学习48-属性注入注入数组和列表的说明
15 0
深度学习与CV教程(2) | 图像分类与机器学习基础
图像分类是计算机视觉的核心任务。本文讲解数据驱动的模型算法,包括最邻近算法、KNN分类器、线性分类器的原理、各自的优缺点和实际应用【对应 CS231n Lecture 2】
1229 0
6万字解决算法面试中的深度学习基础问题(三)
6万字解决算法面试中的深度学习基础问题(三)
57 0
【王喆-推荐系统】模型篇-(task2)深度学习推荐系统脉络
矩阵分解。在矩阵分解模型的结构(图 1 左)中,用户 One-hot 向量和物品 One-hot 向量分居两侧,它们会先通过隐向量层转换成用户和物品隐向量,再通过点积的方式交叉生成最终的打分预测。
71 0
深度学习:突破新兴技术的边界
从大数据到AI,几乎每个正在发展的技术分支都受益于深度学习的深刻价值。
235 0
面对道路施工封闭,深度学习能帮司机做什么?
小叽导读:还原真实世界是每个地图技术人的追求,并愿意为此付出不懈努力。随着地图静态路网的完善,道路上动态发生的事件,对用户出行的影响逐渐突显出来,尤其是道路上发生的封闭事件。 为了挖掘道路上的封闭事件,高德技术团队设计了一套半监督的深度学习方案。下面通过业务背景、解决方案、建模方法以及业务落地四个方面展开说明。
1204 0
9月6日云栖精选夜读 | 机器如何“猜你喜欢”?深度学习模型在1688的应用实践
昨天,在2018XIN公益大会主论坛上,阿里巴巴董事局主席马云表示:“公益是治疗我们这个地球、治疗我们自己最好的良药,公益是最好的治愈剂。” 用平台和技术为公益赋能是阿里巴巴做公益的独特模式。旗下的云计算公司阿里云也在今天公布了最新的绿色账单:从去年9月到今年8月,阿里云用户通过使用云产品和服务,节省的人力、电力和土地资源相当于减少了384万吨碳排放,等于又种下了2600多万棵大树。
3107 0
称霸Kaggle的十大深度学习技巧
称霸Kaggle的十大深度学习技巧。
36751 0
背水一战 Windows 10 (34) - 控件(进度类): RangeBase, Slider, ProgressBar, ProgressRing
原文:背水一战 Windows 10 (34) - 控件(进度类): RangeBase, Slider, ProgressBar, ProgressRing [源码下载] 背水一战 Windows 10 (34) - 控件(进度类): RangeBase, Slider, ProgressBar...
880 0
+关注
【方向】
欢迎各位对内容方向及质量提需求,我们尽量满足,将国外优质的内容呈现给大家!
706
文章
5
问答
文章排行榜
最热
最新
相关电子书
更多
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载
冬季实战营第三期:MySQL数据库进阶实战
立即下载