深度学习都需要了解什么?无从下手的话,可以看看这份深度学习速查表

简介: 本文介绍了一些深度学习中的常见概念,如梯度、后向传播、ReLU、Dropout、交叉熵与softmax等,以帮助大家快速了解深度学习。

初次接触深度学习时,大家可能会感到无从下手。这里有一些有关深度学习的技巧和要点可供大家参考。

这些都是什么?

在本篇文章,我们将介绍一些深度学习中的常见概念,以帮助大家快速了解这个神奇的领域。


66c4d07e990bf9176b1793decec1ed025861d49e

梯度可视化。图中红色箭头为蓝色函数对应的梯度。


梯度∇ (Nabla)

梯度是一个函数的偏导数,以多个向量作为输入,并输出一个单一的数值(即神经网络中的代价函数)。当我们需要使函数输出增加时,梯度能够告诉我们输入变量在图中的应变化的方向。我们在深度学习中应用梯度,并使用梯度的反方向来降低我们算法的损失。

后向传播

也称为反向传播,是指在网络中正向传播输入数据之后,反向传播误差并根据误差调整网络权重的过程。这种方法在实际应用时使用了微积分中的链式法则。

Sigmoid σ

用于将网络权重映射至[0, 1]区间的激活函数。该函数在图中的曲线类似一个字母'S',函数因此得名,在希腊语中sigma表示字母S。该函数也被称为logistic函数。


ac34b4a939e5938615ad3ef304001a65dfd550b1

Geoffrey Hinton定义的ReLU计算公式


校正线性单元或ReLU

sigmoid函数的值域限制在[0, 1]区间内,而ReLU的值域为0到正无穷。这意味着,sigmoid更适合logistic回归,而ReLU能够更好地表示正数输出。ReLU不会产生梯度消失问题。


ee92ba69b64dba8654d9748017737edb2ac34bb9

Tanh函数


Tanh

Tanh函数是一个可将你的网络权重初始化为[-1, 1]区间内实数的函数。假设你的数据已经规范化,那么我们会得到一个更大的梯度:因为数据以0为中心分布,函数的导数更高。为了验证这点,我们计算tanh函数的导数,并观察函数在[0, 1]区间内的输入。tanh函数的值域为[-1, 1]区间,而sigmoid函数的值域为[0, 1]区间。这也避免了在梯度中的偏差。


1298617056666ca3cf57818a351c1801b703f772

LSTM/GRU

通常应用于递归神经网络,也可扩展至其他场景使用,其充当小型"记忆单元",能够保持输入数据间的状态,用于模型训练,同时,也可解决梯度消失问题,梯度消失问题会导致递归神经网络在进行大约7次迭代后失去先前输入数据的上下文。

Softmax

Softmax函数通常在神经网络的最后用于模型结果的分类。该函数采用多元logistic回归,通常用于多类别的分类任务。Softmax函数通常与交叉熵共同构成模型的损失函数。

L1范式与L2范式

这些正则化方法通过对系数施加惩罚以避免过拟合。L1范式可产生稀疏模型,而L2范式则不会。范式用于指定模型的复杂度。这至关重要,因为它能够提高模型的泛化能力,防止模型对训练数据过拟合。


db4da18747dc8e8b6d9fac433484d4bc32c9f4e4

Dropout

[1]"它防止模型过拟合,并提供了一种有效的方式,来联合不同的数量接近指数级的神经网络架构"(Hinton)。这种方法在网络中随机选择并剔除显式和隐含的神经元。选择的神经元数量取决于该层设置的dropout百分比。

批规范化

[1]当模型网络层数很深时,会出现内部协变量偏移的问题。这种偏移是指"训练期间网络参数变化所导致的网络输出分布的变化" (Szegedy)。如果我们可以减少内部协变量偏移,那么我们就可以更好更快地训练模型。批规范化通过使用均值与方差对传入网络的各批数据进行规范化处理,进而解决此类问题。

目标函数

也称为损失函数或评价优化函数。网络训练的目的在于最小化损失以最大化网络精度。

F1/F分数

F1/F分数是一种根据准确率与召回率来评估模型预测精度的评价指标,计算公式如下:

F1 = 2 (准确率 召回率) / (准确率 + 召回率)

准确率:在所有预测结果中,预测正确的结果比例为多少?

准确率 = 真阳性结果数 / (真阳性结果数 + 假阳性结果数)

召回率:在所有实际正确的结果中,预测出来的正确结果的比例为多少?

召回率 = 真阳性结果数 / (真阳性结果数 + 假阴性结果数)

交叉熵

交叉熵用于计算预测标签与实际情况的偏差。有时简称为CE。


d71ff6a7c8beffad30f1c224a92752456b05842a

交叉熵是一种损失函数,与热力学中熵的概念相关。交叉熵用于多类别分类场景下预测误差的计算。

本文介绍的内容可能不够全面,如果有任何您觉得有必要补充的内容,欢迎您与我联系。

[1] * 参考自: InflationAaron
数十款阿里云产品限时折扣中,赶紧点击领劵开始云上实践吧!
以上为译文

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。

文章原标题《Deep Learning Cheat Sheet》,作者:Camron Godbout,译者:6816816151

文章为简译,更为详细的内容,请查看原文

相关文章
|
机器学习/深度学习 分布式计算 搜索推荐
这是一张机器&深度学习代码速查表
这是一张机器&深度学习代码速查表
这是一张机器&深度学习代码速查表
|
机器学习/深度学习 算法 大数据
确定不收藏?十张机器学习和深度学习工程师必备速查表!
本文讲的是十张机器学习和深度学习工程师必备速查表,<对于初学者,机器学习和深度学习课程会很困难,此外各类深度学习库也十分难理解。我在Github上创建了一个本地库(https://github.com/kailashahirwar/cheatsheets-ai ),里面包含了从不同渠道收集的速查表,可以直接下载。
3176 0
|
14天前
|
机器学习/深度学习 API 语音技术
|
1天前
|
机器学习/深度学习 边缘计算 监控
深度学习赋能智能监控:图像识别技术的革新与应用
【4月更文挑战第23天】 随着人工智能的迅猛发展,深度学习技术在图像处理领域取得突破性进展,特别是在智能监控系统中,基于深度学习的图像识别已成为提升系统智能化水平的核心动力。本文旨在探讨深度学习如何优化智能监控系统中的图像识别过程,提高监控效率和准确性,并分析其在不同应用场景下的具体实施策略。通过深入剖析关键技术、挑战及解决方案,本文为读者提供了一个关于深度学习图像识别技术在智能监控领域应用的全面视角。
|
1天前
|
机器学习/深度学习 存储 边缘计算
深度学习在图像识别中的应用与挑战
【4月更文挑战第23天】 随着人工智能技术的飞速发展,深度学习作为其重要分支之一,在图像识别领域取得了显著的成果。本文将探讨深度学习在图像识别中的应用,分析其优势和面临的挑战,并展望未来的发展趋势。
|
3天前
|
机器学习/深度学习 数据采集 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【4月更文挑战第21天】 本文章深入探讨了深度学习技术在自动驾驶车辆图像识别领域的应用。不同于传统的摘要方式,本文将直接点出研究的核心价值和实际应用成果。我们专注于卷积神经网络(CNN)的创新设计,其在复杂道路场景下的行人和障碍物检测中的高效表现,以及这些技术如何整合到自动驾驶系统中以增强安全性和可靠性。通过实验验证,我们的模型在公开数据集上达到了行业领先水平的准确率,并且在真实世界的测试场景中展现了卓越的泛化能力。
|
4天前
|
机器学习/深度学习 算法 云计算
深度学习在图像识别中的应用与挑战
【4月更文挑战第21天】 随着计算机视觉技术的飞速发展,深度学习已经成为图像识别任务的核心动力。本文旨在探讨深度学习技术在图像识别领域的应用进展,分析其面临的主要挑战,并提出可能的解决方案。通过对卷积神经网络(CNN)的深入研究,我们揭示了其在图像分类、目标检测和语义分割中的关键作用。同时,数据不平衡、模型泛化能力和计算资源限制等问题也被详细讨论。文章最终指出了未来研究的方向,包括网络结构的优化、无监督学习的发展以及跨领域知识迁移的可能性。
|
5天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用研究
【4月更文挑战第20天】 本研究聚焦于深度学习技术在图像识别领域的应用,并探讨其在自动驾驶系统中的实际效用。文章首先回顾了深度学习与图像处理技术的基础知识,随后详细分析了卷积神经网络(CNN)在车辆环境感知中的关键作用。通过实验数据对比分析,本文验证了所提出算法在提高自动驾驶车辆对周围环境的识别准确性和实时性方面的有效性。最后,讨论了目前技术的局限性及未来可能的研究方向,旨在为进一步的技术突破提供参考。
|
6天前
|
机器学习/深度学习 监控 算法
深度学习驱动下的智能监控革新:图像识别技术的前沿应用
【4月更文挑战第19天】 在数字时代,智能监控系统作为城市安全和效率的守护者,正经历着前所未有的技术变革。本文深入探讨了基于深度学习的图像识别技术如何重塑智能监控领域,通过算法创新提升识别准确率,实时处理大量数据,并在各种环境条件下稳定运行。我们将分析当前最前沿的技术应用案例,探讨其在实际应用中遇到的挑战及未来发展趋势,从而为相关领域的研究者和实践者提供参考和启示。
|
6天前
|
机器学习/深度学习 传感器 人工智能
基于深度学习的图像识别技术在自动驾驶系统中的应用
【4月更文挑战第18天】 随着人工智能的快速发展,深度学习技术在图像处理和识别领域取得了显著进展。特别是在自动驾驶系统中,基于深度学习的图像识别技术已成为关键技术之一。本文将探讨深度学习在自动驾驶系统中的应用,重点关注卷积神经网络(CNN)和循环神经网络(RNN)在车辆检测、行人识别和交通标志识别等方面的应用。通过对比传统图像识别方法,我们将展示深度学习技术如何提高自动驾驶系统的准确性和鲁棒性。