YOLOv8 | 卷积模块 | 提高网络的灵活性和表征能力的动态卷积【附代码+小白可上手】
本教程介绍了如何在YOLOv8中使用动态卷积提升网络性能和灵活性。动态卷积利用注意力机制动态选择和组合卷积核,适应输入数据特征,解决了轻量级CNN的局限。文中提供了详细步骤教读者如何添加和修改代码,包括在`conv.py`中添加`Dynamic_conv2d`模块,更新`init.py`、`task.py`和`yaml`配置文件。此外,还分享了完整代码和进阶技巧,帮助深度学习初学者实践目标检测。参考[YOLOv8改进](https://blog.csdn.net/m0_67647321/category_12548649.html)专栏获取更多详情。
FFmpeg开发笔记(二十二)FFmpeg中SAR与DAR的显示宽高比
《FFmpeg开发实战》书中指出,视频宽高处理需考虑采样宽高比(SAR),像素宽高比(PAR)和显示宽高比(DAR)。SAR对应AVCodecParameters的sample_aspect_ratio,PAR为width/height。当SAR的num与den不为1时,需计算DAR以正确显示视频。书中提供了转换公式和代码示例,通过SAR或DAR调整视频尺寸。在修正后的playsync2.c程序中,成功调整了meg.vob视频的比例,实现了正确的画面显示。
YOLOv5 | 卷积模块 | 即插即用的可变核卷积AKConv【附代码+小白可上手】
本文介绍了YOLOv5模型的一个改进,即使用AKConv替代标准卷积以提高目标检测效果。AKConv允许卷积核有任意数量的参数和采样形状,增强了对不同目标形状和大小的适应性。教程详细讲解了AKConv的原理,提供了代码实现步骤,包括如何将AKConv添加到YOLOv5中,并给出了相关代码片段。此外,还分享了完整的YOLOv5 AKConv实现代码和GFLOPs计算,鼓励读者动手实践。通过这一改进,网络在保持性能的同时增加了灵活性。
FFmpeg开发笔记(二十一)Windows环境给FFmpeg集成AVS3解码器
AVS3是中国首个8K及5G视频编码标准,相比AVS2和HEVC性能提升约30%。解码器libuavs3d支持8K/60P视频实时解码,兼容多种平台。《FFmpeg开发实战》书中介绍了在Windows环境下如何集成libuavs3d到FFmpeg。集成步骤包括下载源码、使用Visual Studio 2022编译、调整配置、安装库文件和头文件,以及重新配置和编译FFmpeg以启用libuavs3d。
分享:如何ocr识别身份证复印件并导出至excel表格 ? 图片批量识别导出excel表格应用,图片批量识别转excel表格的方法
该软件是一款OCR身份证识别工具,能批量处理图片,自动提取身份证信息并导出为Excel。支持百度网盘和腾讯云盘下载。用户界面直观,操作简单,适合新手。识别过程包括:打开图片、一键识别、导出结果。特别注意,此程序仅适用于身份证识别,不适用于其他类型的图片识别。
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。
YOLOv8改进 | 融合模块 | 用Resblock+CBAM卷积替换Conv【轻量化网络】
在这个教程中,介绍了如何将YOLOv8的目标检测模型改进,用Resblock+CBAM替换原有的卷积层。Resblock基于ResNet的残差学习思想,减少信息丢失,而CBAM是通道和空间注意力模块,增强网络对特征的感知。教程详细解释了ResNet和CBAM的原理,并提供了代码示例展示如何在YOLOv8中实现这一改进。此外,还给出了新增的yaml配置文件示例以及如何注册模块和执行程序。作者分享了完整的代码,并对比了改进前后的GFLOPs计算量,强调了这种改进在提升性能的同时可能增加计算需求。教程适合深度学习初学者实践和提升YOLO系列模型的性能。