正则化DINO框架是如何解决传统非对比式自监督学习中的模型坍塌问题的?
正则化DINO框架通过引入多样性正则和冗余度消除正则来解决传统非对比式自监督学习中的模型坍塌问题。多样性正则用于提高特征的多样性,而冗余度正则则用于减小特征的冗余度。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。