开发者社区 > 大数据与机器学习 > 人工智能平台PAI > 正文

机器学习PAI中DSSM向量召回是什么意思?

机器学习PAI中DSSM向量召回是什么意思?

展开
收起
冰激凌甜筒 2023-06-05 16:31:28 141 0
5 条回答
写回答
取消 提交回答
  • CSDN博客专家,51CTO博主专家,多知名企业认证讲师&签约作者&培训讲师,特邀作者等,华为云专家,资深测试开发专家,金牌面试官,职场面试培训及规划师。

    【回答】

    DSSM是Deep Structured Semantic Model的缩写,是一种基于神经网络的语义匹配模型。

    在推荐系统中,DSSM向量召回是指通过计算用户向量和物品向量的相似度,筛选出与用户兴趣最相似的一批物品,作为候选物品集合。

    这个过程可以用于推荐系统中的召回阶段,用于缩小候选物品集合的规模,提高推荐效率和质量。

    2023-06-06 14:11:38
    赞同 展开评论 打赏
  • 公众号:网络技术联盟站,InfoQ签约作者,阿里云社区签约作者,华为云 云享专家,BOSS直聘 创作王者,腾讯课堂创作领航员,博客+论坛:https://www.wljslmz.cn,工程师导航:https://www.wljslmz.com

    DSSM(Deep Structured Semantic Model)是一种用于文本相似度计算的深度神经网络模型。在阿里云机器学习PAI中,DSSM向量召回是一种基于DSSM模型的文本检索技术,用于根据用户输入的查询文本从海量数据中快速检索出与之相关的文档。

    具体来说,DSSM向量召回的过程可以分为以下几个步骤:

    1. 预处理阶段:对原始文本进行分词、去除停用词、转换为词向量等操作,得到固定维度的文本向量表示。

    2. 建模阶段:使用DSSM模型对文本进行编码,并将文本表示为向量形式。这些向量可以被看做是对文本的抽象表示,其中每个维度对应一个重要的语义特征。

    3. 召回阶段:根据用户输入的查询文本,计算其向量表示,并在海量数据的DSSM向量集合中查找与之最相似的文本向量。可以使用常见的检索算法如KNN或余弦相似度等进行匹配,并将查询结果按照相似度进行排序。

    4. 排序阶段:将召回的文本向量按照相似度从高到低排序,选取前N个作为查询结果返回给用户。

    DSSM向量召回技术具有精度高、速度快和可扩展性强等优点,在搜索引擎、广告推荐、智能客服等领域得到了广泛应用。在阿里云机器学习PAI中,可以使用DSSM向量召回组件快速构建和部署基于DSSM模型的文本检索任务。

    2023-06-05 21:53:52
    赞同 展开评论 打赏
  • 北京阿里云ACE会长

    DSSM(Deep Structured Semantic Model)向量召回是一种基于深度学习的向量召回技术,用于实现推荐系统中的召回阶段。在推荐系统中,召回阶段的目标是从海量的候选物品中快速地筛选出一小部分有可能感兴趣的物品,以便后续的排序和推荐。

    DSSM向量召回技术使用深度神经网络模型来学习用户和物品的语义向量表示,将用户和物品转换为低维度的向量表示。具体来说,DSSM向量召回技术使用两个相同的神经网络来学习用户和物品的向量表示,这两个神经网络之间共享权重。在训练过程中,使用交叉熵损失函数来最小化预测结果与真实结果之间的差异。

    在召回阶段,DSSM向量召回技术将用户输入的查询语句和物品的向量表示进行相似度计算,得到相似度分数,并根据分数进行排序和筛选。召回的结果是一小部分与用户查询相关的物品,这些物品将用于后续的排序和推荐。

    DSSM向量召回技术在推荐系统中具有很好的效果,可以快速地筛选出与用户查询相关的物品,提高推荐系统的召回率和准确率。

    2023-06-05 17:48:30
    赞同 展开评论 打赏
  • "DSSM" 全称为 "Deep Structured Semantic Models",中文意思为 "深度结构语义模型"。 DSSM 是一种使用神经网络进行语义相关度计算的模型,主要应用于语义搜索、推荐系统、文本分类等领域。

    在机器学习 PAI 中的 DSSM 向量召回,主要是指利用 DSSM 模型生成文本向量,并将向量用于召回阶段的推荐系统中。

    具体来说,DSSM 向量召回可以分为两个阶段:

    1. 训练阶段:在训练阶段中,利用 DSSM 模型对文本进行特征提取,生成文本向量。通常一般是通过已有的标注样本进行有监督学习。

    2. 召回阶段:在召回阶段中,利用 DSSM 向量来快速地计算用户及候选物品之间的语义相关度,以此来进行推荐。

    因此,DSSM 向量召回是推荐系统中的一种算法实现方式,它可以在搜索及推荐过程中提高推荐结果的准确性。

    2023-06-05 17:27:11
    赞同 展开评论 打赏
  • CSDN全栈领域优质创作者,万粉博主;InfoQ签约博主;华为云享专家;华为Iot专家;亚马逊人工智能自动驾驶(大众组)吉尼斯世界纪录获得者

    DSSM向量召回是指使用深度学习中的DSSM(Deep Semantic Mapping)模型来对文本进行向量化表示,然后从训练集中找到与该向量相似的文档,以实现文档推荐、相似度搜索等功能。具体来说,DSSM模型将文本转换为高维向量表示,然后通过计算两个向量的相似度来判断它们之间的相似程度,从而进行召回操作。这种方法可以有效地提高推荐算法的准确性和效率。

    2023-06-05 17:22:45
    赞同 展开评论 打赏

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

相关产品

  • 人工智能平台 PAI
  • 热门讨论

    热门文章

    相关电子书

    更多
    微博机器学习平台架构和实践 立即下载
    机器学习及人机交互实战 立即下载
    大数据与机器学习支撑的个性化大屏 立即下载