Mlflow的四个核心功能解决了机器学习工作流中的哪些痛点?
1)MIfLow Tracking解决了机器学习实验难以追踪的问题。
2)MIfLow Project解决了机器学习工作流中没有标准的方式来打包环境导致实验结果难以复现的问题。
3)Mlflow Model:和Model Registry解决了没有标准的方式来管理模型生命周期的问题。
以上内容摘自《Databricks数据洞悉》电子书,点击https://developer.aliyun.com/topic/download?id=8545可下载完整版
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
阿里云EMR是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、ClickHouse、StarRocks、Delta、Hudi等开源大数据计算和存储引擎,计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK平台。