Spark 的 ML 和 MLLib 两个包区别和联系是什么?
技术角度上,面向的数据集类型不一样: ML 的 API 是面向 Dataset 的(Dataframe 是 Dataset 的子集,也就是 Dataset[Row]), mllib 是面对 RDD 的。Dataset 和 RDD 有啥不一样呢?Dataset 的底端是 RDD。Dataset 对 RDD 进行了更深一层的优化,比如说有 sql 语言类似的黑魔法,Dataset 支持静态类型分析所以在 compile time 就能报错,各种 combinators(map,foreach 等)性能会更好,等等。 编程过程上,构建机器学习算法的过程不一样: ML 提倡使用 pipelines,把数据想成水,水从管道的一段流入,从另一端流出。ML 是1.4比 Mllib 更高抽象的库,它解决如果简洁的设计一个机器学习工作流的问题,而不是具体的某种机器学习算法。未来这两个库会并行发展。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。