开发者社区> 问答> 正文

RDD和DataFrame和DataSet的关系是什么?

RDD和DataFrame和DataSet的关系是什么?

展开
收起
芯在这 2021-12-08 22:28:19 366 0
1 条回答
写回答
取消 提交回答
  • 共性:

    1、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利

    2、三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算,极端情况下,如果代码里面有创建、转换,但是后面没有在Action中使用对应的结果,在执行时会被直接跳过,

    map中的println("运行")并不会运行

    3、三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出

    4、三者都有partition的概念

    这样对每一个分区进行操作时,就跟在操作数组一样,不但数据量比较小,而且可以方便的将map中的运算结果拿出来,如果直接用map,map中对外面的操作是无效的,

    不使用partition时,对map之外的操作无法对map之外的变量造成影响

    5、三者有许多共同的函数,如filter,sort等

    6、在对DataFrame和Dataset进行操作许多操作都需要这个包进行支持

    7、DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型

    区别: RDD:

    1、RDD一般和spark mlib同时使用

    2、RDD不支持sparksql操作

    DataFrame:

    1、与RDD和Dataset不同,DataFrame每一行的类型固定为Row,只有通过解析才能获取各个字段的值

    每一列的值没法直接访问

    2、DataFrame与Dataset一般与spark ml同时使用

    3、DataFrame与Dataset均支持sparksql的操作,比如select,groupby之类,还能注册临时表/视窗,进行sql语句操作

    4、DataFrame与Dataset支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然

    Dataset:

    这里主要对比Dataset和DataFrame,因为Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同

    DataFrame也可以叫Dataset[Row],每一行的类型是Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的getAS方法或者共性中的第七条提到的模式匹配拿出特定字段

    而Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息

    2021-12-08 22:43:01
    赞同 展开评论 打赏
问答分类:
问答地址:
问答排行榜
最热
最新

相关电子书

更多
demystifying dataframe and dataset 立即下载
Adopting Dataframes and Parque 立即下载
Data Wrangling with PySpark for Data Scientists Who Know Pandas 立即下载