批量挖掘到有价值样本放进训练集训练模型,并控制数据均衡,剔除脏数据,就能提高性能?
Maybe. May God bless you !
若挖掘到一倍的训练数据,直接将训练集double了,模型几乎无一例外地都学偏了(至少在我们的场景下是如此)。这种根据模型某一状态的判断就一步到位地确定大批量训练数据的方法容易引入“偏见”,训练出的模型找到的分界面并非最佳分界面。
为了解决这个问题,我们从训练集样本构成角度动刀,让挑选数据集不全是当前模型分界面附近的hard样本,同时存在一定比例的容易样本。我们通过在主动学习算法中使用性能较弱的预测模型挑选数据,以实现这个目的。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。