1.离散特征的增加和减少都很容易,方便模型的迭代 2.悉数向量内积乘法运算速度快,,计算结果方便存储,容易扩展 3.离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是I,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰 4.逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。