开发者社区> 问答> 正文

一道逻辑题:我拿走了哪个数:报错

原文链接:http://www.cnblogs.com/baiyanhuang/archive/2010/06/23/1763981.html

作者:@baiyanhuang


有 1 到 10000 共 10000 个数,如果我从中随机拿走一个数,你如何知道我拿走了哪个?

相信很多人看过这道题,并知道答案,这几天和同事聊天时听到了这个问题,因为有过自己的思考过程,不妨记录下来。 说是逻辑题,其实也算是一道算法题,同事先讲了下他被面试中的思维过程:

  1. 先把 10000 个数相乘,然后再将拿走一个数之后的 9999 个数相乘,两者相除即可。

    这个算法是正确的,但是会有两个潜在的问题:

    • 如此多的数相乘,其范围必然会超出系统提供的数据类型支持,当然你可以实现自己的大数表示的算法,但那样性能必然有影响。
    • 假设扩展一下题目,提供的数组中有 0 的话,乘法就不可用了。
  1. 针对前面提出的问题,同事想到了使用加法,先求出 10000 个数的和,再减去 9999 个数的和。

    这样数据不会溢出,而且加法的效率比乘法也要高很多,即使数据中包含 0,也没有任何问题。

然后就过关了,自己回去之后思考了一下,觉得还可以扩展,假设所有的数加起来之后仍然会溢出,那该如何处理,比如从 1 到 (2^64-1),于是想到了位操作,与、或,异或中,要数异或最为神奇,代入一看,果然合适: 先将所有的数异或起来,然后将拿走一个数之后的数异或起来,两者结果再异或,便是拿走的那个数。

我用 a,b,c,d 4 个数来做演示,因为异或符合结合律和交换律(你可以用 0,1 试一下),于是:

a^b^c^d = (a^b^c)^d
d = (a^b^c^d)^(a^b^c)

此处用异或的好处在于

  1. 不会溢出
  2. 异或的速度要快于加法

扩展一下题目,如果提供的不是整数,而是浮点数,会有问题吗? 当然没有,因为是在位级别上操作,无论是整数还是浮点数,在这个算法看来,都是一堆位,处理起来没有什么差别。

再扩展一下题目,如果提供的数本身就超出了内置类型的表示范围,如在 1 到 2^128,该如何处理? 这个问题是在写这篇文章的过程中想到的,暂时没有好的办法。

展开
收起
kun坤 2020-06-14 13:55:46 391 0
0 条回答
写回答
取消 提交回答
问答分类:
问答地址:
问答排行榜
最热
最新

相关电子书

更多
低代码开发师(初级)实战教程 立即下载
冬季实战营第三期:MySQL数据库进阶实战 立即下载
阿里巴巴DevOps 最佳实践手册 立即下载