使用spark 命令行执行
val file = sc.textFile("s3n://***:***@filepath") file.count()
java.lang.NullPointerException at org.apache.hadoop.fs.s3native.NativeS3FileSystem.getFileStatus(NativeS3FileSystem.java:433) at org.apache.hadoop.fs.Globber.getFileStatus(Globber.java:57) at org.apache.hadoop.fs.Globber.glob(Globber.java:248) at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1642) at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:257) at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228) at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:304) at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:201) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:205) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:203) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.rdd.RDD.partitions(RDD.scala:203) at org.apache.spark.rdd.MappedRDD.getPartitions(MappedRDD.scala:28) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:205) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:203) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.rdd.RDD.partitions(RDD.scala:203) at org.apache.spark.rdd.FilteredRDD.getPartitions(FilteredRDD.scala:29) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:205) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:203) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.rdd.RDD.partitions(RDD.scala:203) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1328) at org.apache.spark.rdd.RDD.count(RDD.scala:910) at $iwC$$iwC$$iwC$$iwC.<init>(<console>:17) at $iwC$$iwC$$iwC.<init>(<console>:22) at $iwC$$iwC.<init>(<console>:24) at $iwC.<init>(<console>:26) at <init>(<console>:28) at .<init>(<console>:32) at .<clinit>(<console>) at .<init>(<console>:7) at .<clinit>(<console>) at $print(<console>) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:852) at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1125) at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:674) at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:705) at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:669) at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:828) at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:873) at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:785) at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:628) at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:636) at org.apache.spark.repl.SparkILoop.loop(SparkILoop.scala:641) at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply$mcZ$sp(SparkILoop.scala:968) at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:916) at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:916) at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:916) at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1011) at org.apache.spark.repl.Main$.main(Main.scala:31) at org.apache.spark.repl.Main.main(Main.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
有谁见过这个问题吗
通过跟亚马逊方面3天的沟通,与测试发现: endpoint 指定global 是可以成功的,而且在更新jets3t 之后法兰克福Region 也可以访问了。但是在访问北京区域时,数据包仍发往global。因为中国区和海外其他区域账号是隔离的,所以造成了s3n 无法访问北京区域S3。最后给出结论: 在中国区S3n还未能很好地支持######您好,我是未入门的spark菜鸟一只,想问您一下这个问题您最后是怎么解决的?######最后移植到EMR 上了。新加坡区应该是支持的。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。