我使用以下代码保存了构建的CNN的历史纪元
history=classifier.fit_generator(training_set,
steps_per_epoch = 3194 // batchsize,
epochs = 100,
validation_data =test_set,
validation_steps = 1020 // batchsize)
with open('32_With_Dropout_rl_001_1_layer', 'wb') as file_pi:
pickle.dump(history.history, file_pi)
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy using 32 filters, dropout and .001 Adam learning rate')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['val_loss'])
plt.title('model loss using 32 filters, dropout and .001 Adam learning rate')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['test'], loc='upper left')
plt.show()
我正在尝试加载使用以下代码保存的图,但它给了我AttributeError:'dict'对象没有属性'history'
f = open('32_With_Dropout_rl_001_1_layer', 'rb')
history = pickle.load(f)
f.close()
# summarize history for accuracy
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy using 32 filters, dropout and .001 Adam learning rate')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['val_loss'])
plt.title('model loss using 32 filters, dropout and .001 Adam learning rate')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['test'], loc='upper left')
plt.show()
问题来源:stackoverflow
您要保存的是“ history.histroy”字典而不是“ history”。尝试通过加载的泡菜数据中的“ history ['val_loss”]`访问数据。
回答来源:stackoverflow
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。