我一直在尝试使用CrossValidator我的训练数据,但我总是收到错误消息:
"An error occurred while calling o80267.evaluate.
: java.lang.IllegalArgumentException: Field "rawPrediction" does not exist.
Available fields: label, features, CrossValidator_6a7bb791f63f_rand, features_scaled, prediction"
这是代码:
df = spark.createDataFrame(input_data, ["label", "features"])
train_data, test_data = df.randomSplit([.8,.2],seed=1234)
train_data.show()
standardScaler = StandardScaler(inputCol="features", outputCol="features_scaled")
lr = LinearRegression(maxIter=10)
pipeline = Pipeline(stages=[standardScaler, lr])
paramGrid = ParamGridBuilder()\
.addGrid(lr.regParam, [0.3, 0.1, 0.01])\
.addGrid(lr.fitIntercept, [False, True])\
.addGrid(lr.elasticNetParam, [0.0, 0.5, 0.8, 1.0])\
.build()
crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=BinaryClassificationEvaluator(),
numFolds=2)
cvModel = crossval.fit(train_data)
使用时train_data.show()(在第三行中)输出如下:
+-----+--------------------+
|label| features|
+-----+--------------------+
|4.526|[129.0,322.0,126....|
|3.585|[1106.0,2401.0,11...|
|3.521|[190.0,496.0,177....|
|3.413|[235.0,558.0,219....|
|3.422|[280.0,565.0,259....|
|2.697|[213.0,413.0,193....|
|2.992|[489.0,1094.0,514...|
|2.414|[687.0,1157.0,647...|
|2.267|[665.0,1206.0,595...|
|2.611|[707.0,1551.0,714...|
|2.815|[434.0,910.0,402....|
|2.418|[752.0,1504.0,734...|
|2.135|[474.0,1098.0,468...|
|1.913|[191.0,345.0,174....|
|1.592|[626.0,1212.0,620...|
| 1.4|[283.0,697.0,264....|
|1.525|[347.0,793.0,331....|
|1.555|[293.0,648.0,303....|
|1.587|[455.0,990.0,419....|
|1.629|[298.0,690.0,275....|
+-----+--------------------+
我已经搜索rawPrediction了,但至少我是如何理解的,只有在转换测试数据DF后才会添加此列。那我在这里做错了什么,为什么我会收到这个错误?我是否将某些列命名为错误?我也改名scaled_features为,features但显然没有帮助。
您错误地BinaryClassificationEvaluator在回归问题中使用,并且由于rawPrediction仅由分类模型使用而不是用于回归问题,因此您的求值程序会查找列rawPrediction,找不到它并返回错误。
更改交叉验证器,如下所示:
from pyspark.ml.evaluation import RegressionEvaluator
crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=RegressionEvaluator(),
numFolds=2)
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。