网络安全 简述RSA算法的原理和特点-问答-阿里云开发者社区-阿里云

开发者社区> 问答> 正文

网络安全 简述RSA算法的原理和特点

知与谁同 2018-07-19 11:48:22 1036
如题 简述RSA算法的原理和特点
算法 网络安全
分享到
取消 提交回答
全部回答(1)
  • 小旋风柴进
    2019-07-17 22:56:09
    1978年就出现了这种算法,它是第一个既能用于数据加密也能用于数字签名的算法。
    它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, Adi
    Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。

    RSA的安全性依赖于大数分解。公钥和私钥都是两个大素数( 大于 100
    个十进制位)的函数。据猜测,从一个密钥和密文推断出明文的难度等同于分解两个
    大素数的积。

    密钥对的产生。选择两个大素数,p 和q 。计算:

    n = p * q

    然后随机选择加密密钥e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互质。最后,利用
    Euclid 算法计算解密密钥d, 满足

    e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )

    其中n和d也要互质。数e和
    n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任何人知道。

    加密信息 m(二进制表示)时,首先把m分成等长数据块 m1 ,m2,..., mi ,块长s
    ,其中 2^s <= n, s 尽可能的大。对应的密文是:

    ci = mi^e ( mod n ) ( a )

    解密时作如下计算:

    mi = ci^d ( mod n ) ( b )

    RSA 可用于数字签名,方案是用 ( a ) 式签名, ( b )
    式验证。具体操作时考虑到安全性和 m信息量较大等因素,一般是先作 HASH 运算。

    RSA 的安全性。
    RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因
    为没有证明破解
    RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成
    为大数分解算法。目前, RSA
    的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现
    在,人们已能分解140多个十进制位的大素数。因此,模数n
    必须选大一些,因具体适用情况而定。

    RSA的速度。
    由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论是软件还是硬
    件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。

    RSA的选择密文攻击。
    RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装(
    Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上
    ,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:

    ( XM )^d = X^d *M^d mod n

    前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使
    用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议
    ,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息
    签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way Hash
    Function
    对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方
    法。

    RSA的公共模数攻击。
    若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的
    情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就
    可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:

    C1 = P^e1 mod n

    C2 = P^e2 mod n

    密码分析者知道n、e1、e2、C1和C2,就能得到P。

    因为e1和e2互质,故用Euclidean算法能找到r和s,满足:

    r * e1 + s * e2 = 1

    假设r为负数,需再用Euclidean算法计算C1^(-1),则

    ( C1^(-1) )^(-r) * C2^s = P mod n

    另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d
    ,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无
    需分解模数。解决办法只有一个,那就是不要共享模数n。

    RSA的小指数攻击。 有一种提高
    RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有所提高。
    但这样作是不安全的,对付办法就是e和d都取较大的值。

    RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研
    究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为
    人们接受,普遍认为是目前最优秀的公钥方案之一。RSA
    的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难
    度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数
    人士倾向于因子分解不是NPC问题。
    RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次
    一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits
    以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大
    数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(
    Secure Electronic Transaction
    )协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。

    DSS/DSA算法

    Digital Signature Algorithm
    (DSA)是Schnorr和ElGamal签名算法的变种,被美国NIST作为DSS(Digital Signature
    Standard)。算法中应用了下述参数:
    p:L bits长的素数。L是64的倍数,范围是512到1024;
    q:p - 1的160bits的素因子;
    g:g = h^((p-1)/q) mod p,h满足h < p - 1, h^((p-1)/q) mod p > 1;
    x:x < q,x为私钥 ;
    y:y = g^x mod p ,( p, q, g, y )为公钥;
    H( x ):One-Way Hash函数。DSS中选用SHA( Secure Hash Algorithm )。
    p, q,
    g可由一组用户共享,但在实际应用中,使用公共模数可能会带来一定的威胁。签名及
    验证协议如下:
    1. P产生随机数k,k < q;
    2. P计算 r = ( g^k mod p ) mod q
    s = ( k^(-1) (H(m) + xr)) mod q
    签名结果是( m, r, s )。
    3. 验证时计算 w = s^(-1)mod q
    u1 = ( H( m ) * w ) mod q
    u2 = ( r * w ) mod q
    v = (( g^u1 * y^u2 ) mod p ) mod q
    若v = r,则认为签名有效。

    DSA是基于整数有限域离散对数难题的,其安全性与RSA相比差不多。DSA的一个重要特
    点是两个素数公开,这样,当使用别人的p和q时,即使不知道私钥,你也能确认它们
    是否是随机产生的,还是作了手脚。RSA算法却作不到。

    本文来自CSDN博客,
    0 0
人工智能
使用钉钉扫一扫加入圈子
+ 订阅

了解行业+人工智能最先进的技术和实践,参与行业+人工智能实践项目

推荐文章
相似问题