Flink / Scala- BroadCast 广播流数据先到再处理 Source 数据

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink 支持增加 DataStream KeyBy 之后 conncet BroadCastStream 形成 BroadConnectedStream,广播流内数据一般为不间断更新的上下文信息,这里介绍如果等待广播流初始化完毕再处理 Source 数据

一.引言

Flink 支持增加 DataStream KeyBy 之后 conncet BroadCastStream 形成 BroadConnectedStream,广播流内数据一般为不间断更新的上下文信息,在本例中,需要针对数据流中的用户信息,基于用于信息 + 广播流内的物料库实现推荐逻辑,针对 BroadConnectedStream 流,需要实现 KeyedBroadCastProcessFunction 完成用户流与广播流的处理,主要方法为:

ProcessElement - 根据用户流生成用户信息,根据物料库进行推荐

ProcessBroadcastElement - 获取物料库,并同步至 Context

image.gif编辑

由于任务启动时第一批物料库生成需要一定时间,而用户流则源源不断,从而导致物料库生成之前的来的用户都没有物料库进行推荐,为了保证不遗漏用户推荐,这里需要实现数据等待逻辑,让先到的用户流等待广播流的物料库生成完毕再进行推荐,从而保证不遗漏用户。

二.While True 尝试

一开始尝试带入离线的思维,既然物料库未生成无法完成推荐,则进行 while 判断和 TimeUnit 时间等待,重复判断物料库是否生成并造成线程阻塞,待物料库生成完毕再开始推荐,好处是保证不丢弃一个用户,坏处是前期需要线程堵塞,如果用户流数据过大则背压严重。

override def processElement(bs: BatchSendInfo, readOnlyContext: KeyedBroadcastProcessFunction[Int, BatchSendInfo, MaterialDataBase, SendInfo]#ReadOnlyContext, collector: Collector[SendInfo]): Unit = {
    materialDataBase = readOnlyContext.getBroadcastState(materialDBDescriptor).get("MaterialDBContext") // DB
    // 第一批造成堵塞,知道物料库生成
    while (materialDataBase == null) {
      TimeUnit.SECONDS.sleep(60)
      materialDataBase = readOnlyContext.getBroadcastState(materialDBDescriptor).get("MaterialDBContext") // DB
    }
    val sendInfos = RankUtil.batchRank(bs.userObjects, materialDataBase)
    sendInfos.foreach(collector.collect)
  }
  override def processBroadcastElement(db: MaterialDataBase, context: KeyedBroadcastProcessFunction[Int, BatchSendInfo, MaterialDataBase, SendInfo]#Context, collector: Collector[SendInfo]): Unit = {
    val broadCastValue: BroadcastState[String, MaterialDataBase] = context.getBroadcastState(materialDBDescriptor)
    // 更新 DB
    if (db.isValid) {
      broadCastValue.put("MaterialDBContext", db)
    }
  }

image.gif

BatchSendInfo 内存储一批待推荐的用户类,下述统称 UserObject,我的思路是 whilt true 检查物料库是否生成,未生成则等待 60s 再重新从 readOnlyContext 上下文中获取,待物料库不为 null 时执行 BatchRank 的批量排序逻辑,看上去很美好,但是实践后得到的是死循环。

原因分析:

对于当前处理的 bs: BatchSendInfo,其 context 在 processBroadcastElement 后已经不再更新,我理想化的情况是等到新的 MaterialDataBase 传输后在这里更新 context,但是由于 context 在当前 processFunction 内不再更新,所以我的 while true 是死循环,所以这个方案 pass,这个方案只能适用于 MaterialDataBase 在另外线程生成并能更新到当前线程的场景。

三.ValueState 缓存尝试 👍

还有另外一种方法,就是当物料库不可用时,将先到的数据存到 ValueState 中并设置延时处理,延时时长可以设定为物料库初始化时间左右,待 onTimer 时判断物料库状态,如果物料库初始化成功则执行推荐逻辑,未成功则继续存储至 ValueState,其实本质上和 While True 类似,只不过变成一直存储了,缺点是如果前期数据过多会造成缓存量较大,不过可以通过加大 Heap 或者采用 RocksDB 轻松解决。

override def processElement(bs: BatchSendInfo, readOnlyContext: KeyedBroadcastProcessFunction[Int, BatchSendInfo, MaterialDataBase, SendInfo]#ReadOnlyContext, collector: Collector[SendInfo]): Unit = {
    materialDataBase = readOnlyContext.getBroadcastState(materialDBDescriptor).get("MaterialDBContext") // DB
    val lastBatchUserObject = state.value
    val combineBS = if (lastBatchUserObject == null) {
      bs
    } else {
      val allUser = new ArrayBuffer[DpaUserObject]()
      allUser ++= bs.userObjects
      allUser ++= lastBatchUserObject.userObjects
      BatchSendInfo(allUser.toArray, readOnlyContext.getCurrentKey)
    }
    if (materialDataBase == null) {
      // 物料库不可用
      readOnlyContext.timerService.registerEventTimeTimer(System.currentTimeMillis() + expireTime)
      state.update(combineBS)
    } else {
      // 物料库可用
      val sendInfos = RankUtil.batchRank(combineBS.userObjects, materialDataBase)
      sendInfos.foreach(sendInfo => {
        collector.collect(sendInfo)
      })
    }
  }
  override def processBroadcastElement(db: MaterialDataBase, context: KeyedBroadcastProcessFunction[Int, BatchSendInfo, MaterialDataBase, SendInfo]#Context, collector: Collector[SendInfo]): Unit = {
    val broadCastValue: BroadcastState[String, MaterialDataBase] = context.getBroadcastState(materialDBDescriptor)
    // 更新 DB
    if (db.isValid) {
      broadCastValue.put("MaterialDBContext", db)
    }
  }

image.gif

ProcessBroadcastElement 方法未改变,只是修改了 ProcessElement  方法:

A.lastBatchUserObject 判断当前 key 是否存在已经缓存的批用户

B.CombineBS 用户合并当前 key 需要处理的用户批

C.如果物料库为 null,则将当前批用户存入 ValueState 并设置 expire 过期时间,这个时间可以基于你物料库生成时间,例如物料库正常情况下50s生成,则设置60s过期,保证到期后物料库可用,不需要持续缓存

D.如果物料库已经可用则直接执行 BatchRank 推荐逻辑

所以这里主要就两件事,合并批用户,判断物料库状态决定批用户是存储还是计算。

除了 Process 函数,还包含 onTimer 函数:

override def onTimer(timestamp: Long, ctx: KeyedBroadcastProcessFunction[Int, BatchSendInfo, MaterialDataBase, SendInfo]#OnTimerContext, out: Collector[SendInfo]): Unit = {
    val batchBS = state.value()
    materialDataBase = ctx.getBroadcastState(materialDBDescriptor).get("MaterialDBContext") // DB
    if (!batchBS.equals(null) && !materialDataBase.equals(null)) {
      // 物料库可用,批量下发
      val sendInfos = RankUtil.batchRank(batchBS.userObjects, materialDataBase)
      sendInfos.foreach(sendInfo => {
        out.collect(sendInfo)
      })
    } else {
      // 清除状态
      state.clear()
    }
  }

image.gif

onTimer 单独处理到期的批用户,这里重新获取 materialDataBase,如果批用户和物料库都不为 null 则执行批推荐逻辑,否则清理批用户 state.clear(),我这里会损失数据,如果不想损失数据则将 else 逻辑修改为与 ProcessElement 一致,如果物料库经过 expireTime 还未成功,则继续缓存数据,直到下一个 expireTime 周期,循环往复

context.timerService.registerEventTimeTimer(System.currentTimeMillis() + expireTime)
state.update(combineBS)

image.gif

四.总结

上述代码中的 BatchSendInfo 可以看做是自己的 Source 类,MaterialDataBase 可以看做是自己的广播流上下文,面对需要等到广播流初始化完毕的需求则修改上述对应代码即可,expireTime 则根据广播流变量初始化时间进行设定,缓存方法本地测试缓存159批数据,到期处理159批数据,延迟和存储要求都不高,非常的奈斯~

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
3月前
|
存储 消息中间件 Kafka
基于 Flink 的中国电信星海时空数据多引擎实时改造
本文整理自中国电信集团大数据架构师李新虎老师在Flink Forward Asia 2024的分享,围绕星海时空智能系统展开,涵盖四个核心部分:时空数据现状、实时场景多引擎化、典型应用及未来展望。系统日处理8000亿条数据,具备亚米级定位能力,通过Flink多引擎架构解决数据膨胀与响应时效等问题,优化资源利用并提升计算效率。应用场景包括运动状态识别、个体行为分析和群智感知,未来将推进湖仓一体改造与三维时空服务体系建设,助力数字化转型与智慧城市建设。
464 3
基于 Flink 的中国电信星海时空数据多引擎实时改造
|
4月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
5月前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
1126 43
|
4月前
|
消息中间件 关系型数据库 Kafka
阿里云基于 Flink CDC 的现代数据栈云上实践
阿里云基于 Flink CDC 的现代数据栈云上实践
|
存储 消息中间件 Kafka
Flink Broadcast State实用指南
从1.5.0开始,Flink提供了一种新的State类型,称为Broadcast State。在这篇文章中,我们将解释什么是Broadcast State,并展示如何将其应用于评估事件流上的动态模式的应用的示例。
6243 0
|
10月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
8月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
2814 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
8月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
340 56
|
6月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
419 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
7月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。