Numpy&Pandas
Numpy篇
Numpy 创建array
import numpy as np # a = np.array([1,2,3], dtype =np.int ) # a = np.array([[1,2,3],[3,4,5]] , dtype =float ) #设置精度中 设置64只能用np.float64 # a = np.zeros((3,5),dtype = np.int64) # a = np.ones((3,4), dtype = np.int64) # a = np.empty((3,4), dtype = np.int16) # a = np.empty((3,4)) # a = np.full((3,4),2) #指定矩阵的全部值 # a = np.arange(10,20) # a = np.arange(20) # a = np.arange(20).reshape((5,4)) a = np.linspace(1, 5, 20).reshape((5, 4)) # 线段, 从1到10分段 print(a) print(a.dtype) a.fill(2) # 也可以直接用numpy 中的fill填充2 print(a) # print(help(np.empty))
Numpy属性
import numpy as np a = np.array([[1, 2, 3], [5, 9, 8]]) print(a) print("number of dim:", a.ndim) # 维度 print("shape:", a.shape) print("size:", a.size)
Num基本运算1
import numpy as np # # #a = np.array([1,11,1]) # a = np.array([[1,11,1],[2,3,4]]) # # # b = np.arange(6).reshape(3,2) # # # print(a<5) #判断逻辑符直接输出bool型 # print(a ==5) # # print(a) # print(b) # # #c = a*b //数和数相乘 前提:同型矩阵 # #c = b**2 # #c =a - b # #c = a -b # #c = np.dot(a,b) //矩阵相乘 或者 # #c = a.dot(b) # #c = np.cos(a) * 100 # # # print(c) a = np.random.random((2, 4)) # print(np.max(a)) # print(np.sum(a)) # print(np.min(a)) print(np.max(a, axis=0)) # axis轴 为1 为行 0为列 print(np.sum(a, axis=1)) print(np.min(a, axis=1)) print(a)
Numpy基本运算2
import numpy as np a = np.arange(15, 3, -1).reshape((3, 4)) print(np.argmax(a)) # 最大值索引 argument of a function print(np.argmin(a)) # 最小值索引 # 平均值(也可以设置按行列求) print(np.mean(a)) print(a.mean()) # 老版本 print(np.average(a)) # 不支持 # print(a.average) # 中位数 print(np.median(a)) # 累加前面的值 print(np.cumsum(a)) # Cumulative sum 积累 和 # 输出非0的行和列 print(np.nonzero(a)) # 两数之差 print(np.diff(a)) # 每一行(列)排序 print(np.sort(a, axis=0)) # 转置 print(np.transpose(a)) print(a.T.dot(a)) # 只留下范围内的值 print(np.clip(a, 5, 9)) print(a)
更新中—