PolarFS

简介: PolarFS

  PolarFS

  PolarFS设计中采用了如下技术以充分发挥I/O性能:

  PolarFS采用了绑定CPU的单线程有限状态机的方式处理I/O,避免了多线程I/O pipeline方式的上下文切换开销。

  PolarFS优化了内存的分配,采用MemoryPool减少内存对象构造和析构的开销,采用巨页来降低分页和TLB更新的开销。

  PolarFS通过中心加局部自治的结构,所有元数据均缓存在系统各部件的内存中,基本完全避免了额外的元数据I/O。

  PolarFS采用了全用户空间I/O栈,包括RDMA和SPDK,避免了内核网络栈和存储栈的开销。

  在相同硬件环境下的对比测试,PolarFS中数据块3副本写入性能接近于单副本本地SSD的延迟性能。从而在保障数据可靠性的同时,极大地提升POLARDB的单实例TPS性能。

  PolarDB日志

  在数据库PolarDB中开创性地引入了物理日志(Redo Log)代替了传统的逻辑日志,不仅极大地提升了复制的效率和准确性,还节省了50%的 I/O 操作,对于有频繁写入或更新的数据库,性能可提升50%以上。

目录
相关文章
|
SQL 缓存 运维
MongoDB的性能问题之MongoDB 磁盘IO高问题
MongoDB的性能问题之MongoDB 磁盘IO高问题
|
7月前
|
SQL Rust Java
怎么理解Java中的lambda表达式
Lambda表达式是JDK8引入的新语法,用于简化匿名内部类的代码写法。其格式为`(参数列表) -> { 方法体 }`,适用于函数式接口(仅含一个抽象方法的接口)。通过Lambda表达式,代码更简洁灵活,提升Java的表达能力。
125 4
|
存储 缓存 算法
Flink RocksDB 状态后端参数调优实践
RocksDB 的配置也是极为复杂的,可调整的参数多达百个,没有放之四海而皆准的优化方案。如果仅考虑 Flink 状态存储这一方面,我们仍然可以总结出一些相对普适的优化思路。本文先介绍一些基础知识,再列举方法。
Flink RocksDB 状态后端参数调优实践
|
11月前
|
数据采集 监控 数据挖掘
拼多多商品评价API的获取与应用
在数字化商业时代,拼多多商品评价API为开发者和企业提供深入理解消费者反馈、优化产品策略及提升用户体验的重要途径。本文详述了该API的获取方法及其在电商平台运营优化、品牌商市场调研与产品改进、数据分析与市场洞察等领域的广泛应用,强调了遵守使用规范、数据质量处理及性能优化的重要性。
731 0
|
Kubernetes 算法 调度
Kubernetes的灵魂核心:kube-scheduler
本文介绍了Kubernetes中关键组件kube-scheduler的工作原理,详细解释了其通过预选和优选过程为Pod选择合适节点的机制,并提供了一个简化的Python示例来模拟这一过程,帮助读者更好地理解和管理Kubernetes集群。
|
数据采集 Web App开发 测试技术
使用Selenium与WebDriver实现跨浏览器自动化数据抓取
在网络爬虫领域,Selenium与WebDriver是实现跨浏览器自动化数据抓取的利器。本文详细介绍了如何利用Selenium和WebDriver结合代理IP技术提升数据抓取的稳定性和效率。通过设置user-agent和cookie来模拟真实用户行为,避免被网站检测和阻止。文章提供了具体的代码示例,展示了如何配置代理IP、设置user-agent和cookie,并实现了跨浏览器的数据抓取。合理的参数配置能有效减少爬虫被封禁的风险,提高数据抓取效率。
1162 6
使用Selenium与WebDriver实现跨浏览器自动化数据抓取
|
关系型数据库 分布式数据库 数据库
报名啦|PolarDB数据库创新设计赛(天池杯)等你来战
2024年全国大学生计算机系统能力大赛PolarDB数据库创新设计赛(天池杯)已启动报名,面向全国高校全日制本专科学生。大赛由多家机构联合主办,旨在培养数据库领域人才,促进产学研合作,设有丰厚奖金与奖项。报名截至10月7日,决赛将于12月13日举行。更多详情及报名请访问大赛官网。
|
机器学习/深度学习 数据采集 人工智能
|
机器学习/深度学习 人工智能 监控
构建未来:人工智能在持续学习系统中的进化
【5月更文挑战第28天】 随着机器学习技术的不断进步,人工智能(AI)已经从静态算法演变为具备自我更新能力的动态系统。本文探讨了AI在设计自适应学习机制方面的最新进展,重点分析了持续学习系统如何通过累积知识和优化策略来提升性能。我们审视了多个关键领域,包括神经网络架构的创新、数据效率的学习策略以及模型泛化能力的增强。此外,文章还提出了一系列挑战和未来的研究方向,旨在推动智能系统的自主学习和决策能力,以适应不断变化的环境。
|
存储 分布式计算 Hadoop
带你了解文件系统架构的演变:从传统到分布式
带你了解文件系统架构的演变:从传统到分布式
567 0