大数据的发展展望

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 从数据仓库到数据中台再到数据湖

数据仓库存在的问题

■ 数据实时性问题:由于数据仓库是基于历史数据的,无法满足现代企业管理需求,原来数据仓库基于历史数据设计主要是为了提高查询效率,但是现代的硬件技术与分布式计算早已提供了更好的解决方法。

■ 数据共享问题:数据仓库以主题方式组织数据,比如财务数据、销售数据、采购数据,就使得在解决数据孤岛的问题上又形成了一棵棵“数据烟囱”,各部门在使用数据时,仍然会面临数据不一致问题,且数据仓库与业务之间高度耦合,也使得数据仓库维护工作量很大,修改起来工作量巨大,难以跟上管理变革。

■ 数据分析对业务的支撑不足:由于数据分析是基于历史数据的分析,而业务是实时的,所以两者之间存在一定的时间差,导致数据分析只能起到对业务的“支撑”作用,而无法起到对业务的“驱动”作用。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
存储 人工智能 算法
【大数据发展篇】大数据的诞生
【大数据发展篇】大数据的诞生
442 0
【大数据发展篇】大数据的诞生
|
存储 分布式计算 负载均衡
【大数据发展篇】分布式技术
【大数据发展篇】分布式技术
188 0
【大数据发展篇】分布式技术
|
机器学习/深度学习 人工智能 安全
2017年中国大数据发展趋势和展望解读(上)
2017年中国大数据发展趋势和展望解读(上)
2017年中国大数据发展趋势和展望解读(上)
|
运维 供应链 安全
2017年中国大数据发展趋势和展望解读(下)
2017年中国大数据发展趋势和展望解读(下)
2017年中国大数据发展趋势和展望解读(下)
|
机器学习/深度学习 人工智能 分布式计算
|
分布式计算 大数据 Hadoop