②一文带你斩杀Python之Numpy☀️Pandas全部操作【全网最详细】❗❗❗

简介: 一文带你斩杀Python之Numpy☀️Pandas全部操作【全网最详细】❗❗❗

3 ndarray的属性和基本操作

3.1 ndarray的基本属性

image.png

image.png


3.2 ndarray元素类型

image.png


那么有时候我们再想,如果数组的长度不一致,那么会不会有影响呢?


image.png


通过例子,我们发现,如果构造的数据长度不一致,不会报错,但是会发出警告,也就是说这种方法,在Python里面还是支持的,但是我们发现它被单独的构造为一个list类型了,元素大小也就发生了改变,将一个列表嵌套在一个列表当中。


我们可以看看长度一致的情况:


image.png


显然是符合我们的要求的


3.3 创建ndarray的方式

image.png


创建的时候可以指定我们的数据类型



image.png

np.arange(),返回的是序列数组,最后一个取不到,一维的


np.ones(3,4),返回的是3行4列的全1数组,如果里面有三个数字,那么第一数字代表里面,有多少个单独独立的数组


np.zeros(数组,行,列)生成一个多少个独立数组,每个独立数组里面有多少行,多少列,最后类型是全0数组,如下:


image.png

image.png



np.full((n,m),value),生成一个特定维度的数组,且元素由自己定义


np.eye(n),生成一个nxn的单位矩阵


image.png


np.ones_like(array),生成一个和目标数组一样的全1数组


image.png


使用np.linspace(),形成新的一维序列数组

image.png


使用np.concatenate((array1,array2),axis=0):按照行进行拼接


       np.concatenate((array1,array2),axis=1):按照列进行拼接


image.png


如果这里使用横向连接,那么就会报错,为了防止报错,我们可以使用装置功能


image.png


拼接也要注意,是否可以!!!


3.4 ndarray对象的变换

image.png


我们可以根据自己需要变换我们的一维数组,为多维数组,使用reshape(行,列)


image.png


这个方法也可以修改,但是要注意的是:resize(方法)修改的是原数组,而reshape(方法)并没有修改原数组,需要赋值给新的变量,该修改才能生效。


image.png


使用swapaxes(1,0)进行维度调换,原来的行数变成现在的列数,不改变原数组


image.png


flatten()降维处理,一维,不改变原数组


image.png


astype(np.int16),或者其他的numpy数据类型,直接拷贝数据类型格式


image.png


转换为list类型


3.5 ndarray对象的操作

image.png


索引和我们Python里面的较为相似,如果里面存在多个独立数组,那么第一个索引只取出大的数组框,然后后面对应的就是行和列


image.png


对于步长而言,我们要明确的是,索引从0开始,最后一个索引永远取不到,其次,不写出的索引为默认取到,对于步长取索引,我们按照空格方法记忆最好!


相关文章
|
16天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
45 0
|
9天前
|
数据处理 Python
在数据科学领域,Pandas和NumPy是每位数据科学家和分析师的必备工具
在数据科学领域,Pandas和NumPy是每位数据科学家和分析师的必备工具。本文通过问题解答形式,深入探讨Pandas与NumPy的高级操作技巧,如复杂数据筛选、分组聚合、数组优化及协同工作,结合实战演练,助你提升数据处理能力和工作效率。
30 5
|
10天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
25 2
|
11天前
|
存储 数据采集 数据处理
效率与精准并重:掌握Pandas与NumPy高级特性,赋能数据科学项目
在数据科学领域,Pandas和NumPy是Python生态中处理数据的核心库。Pandas以其强大的DataFrame和Series结构,提供灵活的数据操作能力,特别适合数据的标签化和结构化处理。NumPy则以其高效的ndarray结构,支持快速的数值计算和线性代数运算。掌握两者的高级特性,如Pandas的groupby()和pivot_table(),以及NumPy的广播和向量化运算,能够显著提升数据处理速度和分析精度,为项目成功奠定基础。
23 2
|
8天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
8天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
6月前
|
Python
python相关库的安装:pandas,numpy,matplotlib,statsmodels
python相关库的安装:pandas,numpy,matplotlib,statsmodels
166 0
|
Python Windows
python怎么安装第三方库,python国内镜像源,终于找到最全的安装教程啦;如Requests,Scrapy,NumPy,matplotlib,Pygame,Pyglet,Tkinter
python怎么安装第三方库,python国内镜像源,终于找到最全的安装教程啦;如Requests,Scrapy,NumPy,matplotlib,Pygame,Pyglet,Tkinter
1320 0
|
Python
python如何安装numpy模块?
python安装numpy模块 python numpy安装思路 第一次安装时的思路 第一次安装时遇到的坑 第二次安装的思路(快速安装避免踩坑)
586 0
python如何安装numpy模块?