人工智能破译人类思维:深度神经网络可识别人的想象

简介:
外媒称,日本研究人员已经成功借助人工智能破译了人类的思维和想象,从而在理解人类思想及其背后的大脑机制领域获得了重大突破。

据阿根廷21世纪趋势网站 6月6日报道,破解人类思维的内容是科学界长久以来的愿望。事实上,此前的种种研究也已经实现了破译人类所见、回忆、想象和梦境的内容。
871dee53d3137a830cd97f9ee92cbbcc2345974e

例如另一个日本科学家团队早在 2008 年就成功地在电脑屏幕上直接重现了从人类大脑活动中获取的图像。

但包括这一研究在内的其他以往研究都遭遇了难以逾越的障碍,因为每个个体的大脑内容都具有其独特性,因此思维模式的目录创建很难实现。

报道称,此外,这些模式还必须与少数预编程的图像相结合,这个阶段就需要对实验参与者接受的长期和高成本的图像测试进行无数处理。

不过,根据日本京都大学教授神谷之康及其团队日前发表在《自然·通讯》上的研究报告称,人工智能的到来显然为该领域的研究开辟了新的道路。  他的团队发现,可以利用人工神经网络将人类个体的大脑活动破译和解读成可理解的信号。人工神经网络是一个建立在实验室造神经元基础上的计算机模型,与人类大脑神经元的运行方式类似。  报道称,人工神经网络利用传统算法技术制造出具有理解能力和解决难题能力的计算机软件,能够对人类的思维进行解读。

这一切的基础是人工智能的“ 深度学习”能力,而这种能力是通过对海量数据的解析获得的。

报道称,日本科学家利用一个深度神经网络(DNN)架构克服了此前在破解人类思维、梦境和想象有关的研究中遇到的种种障碍,得到了出人意料的结果。

“我们研究证实,深度神经网络的信号模式可以被用来识别一个人看到或想象的物体,”神谷指出,“解码器获得了神经网络的模式,并将其与大数据库中的影像进行比对。以此方式对人所见和所想的物体进行识别,成功率很高。”

报道称,在这项研究的框架内,日本科学家还发现大脑视觉区破译神经网络的能力最强,从而揭示了人类大脑与实验室制造的神经网络之间的一种同源性。

下一步,神谷希望能够提高解读人类思维的精确度,“人工智能走近大脑科学或将为大脑和机器之间的新接口打开大门,我们将能够更好地去理解人类意识,”他总结道。来源: 医疗

目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
118 55
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
25天前
|
机器学习/深度学习 人工智能 安全
探索人工智能在网络安全中的创新应用
探索人工智能在网络安全中的创新应用
|
1月前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
68 0
|
2月前
|
机器学习/深度学习 算法 数据建模
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
38 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【人工智能】人工智能的历史发展与机器学习和神经网络
【人工智能】人工智能的历史发展与机器学习和神经网络
74 0
|
4月前
|
机器学习/深度学习 人工智能 算法
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。
99 9
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:深度学习与神经网络的融合
在人工智能的广阔天地中,深度学习和神经网络如同两股激流,汇聚成推动技术进步的巨浪。本文将深入探讨这两种技术如何相辅相成,共同塑造未来人工智能的发展轨迹。我们将从基础概念出发,逐步揭示它们在实际应用中的协同效应,以及这种融合如何引领我们步入一个更加智能化的未来。
|
5月前
|
机器学习/深度学习 传感器 人工智能
探索人工智能的未来:深度学习与神经网络的融合
随着科技的进步,人工智能已经逐渐渗透到我们日常生活的方方面面。本文将深入探讨深度学习和神经网络的结合如何推动AI技术的发展,以及这种结合对未来技术趋势的影响。我们将通过具体的实例来揭示这一领域的最新研究成果,并分析其在实际应用中的潜在价值。
|
5月前
|
机器学习/深度学习 人工智能 安全
人工智能在网络安全领域的应用与挑战
随着人工智能技术的飞速发展,其在网络安全领域的潜在价值逐渐显现。AI技术不仅能够提高网络威胁检测的精确度和响应速度,还能预测并防御未来潜在的攻击。然而,AI技术的引入也带来了新的安全风险,如模型欺骗、数据泄露等。本文将探讨AI在网络安全中的应用及其带来的挑战。
下一篇
DataWorks