全网最硬核 Java 新内存模型解析与实验 - 2. 原子访问与字分裂

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 全网最硬核 Java 新内存模型解析与实验 - 2. 原子访问与字分裂
个人创作公约:本人声明创作的所有文章皆为自己原创,如果有参考任何文章的地方,会标注出来,如果有疏漏,欢迎大家批判。如果大家发现网上有抄袭本文章的,欢迎举报,并且积极向这个 github 仓库 提交 issue,谢谢支持~本篇文章参考了大量文章,文档以及论文,但是这块东西真的很繁杂,我的水平有限,可能理解的也不到位,如有异议欢迎留言提出。 本系列会不断更新,结合大家的问题以及这里的错误和疏漏,欢迎大家留言如果你喜欢单篇版,请访问: 全网最硬核 Java 新内存模型解析与实验单篇版(不断更新QA中)如果你喜欢这个拆分的版本,这里是目录:


JMM 相关文档:


内存屏障,CPU 与内存模型相关:


x86 CPU 相关资料:


ARM CPU 相关资料:


各种一致性的理解:


Aleskey 大神的 JMM 讲解:


相信很多 Java 开发,都使用了 Java 的各种并发同步机制,例如 volatile,synchronized 以及 Lock 等等。也有很多人读过 JSR 第十七章 Threads and Locks(地址:https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html),其中包括同步、Wait/Notify、Sleep & Yield 以及内存模型等等做了很多规范讲解。但是也相信大多数人和我一样,第一次读的时候,感觉就是在看热闹,看完了只是知道他是这么规定的,但是为啥要这么规定,不这么规定会怎么样,并没有很清晰的认识。同时,结合 Hotspot 的实现,以及针对 Hotspot 的源码的解读,我们甚至还会发现,由于 javac 的静态代码编译优化以及 C1、C2 的 JIT 编译优化,导致最后代码的表现与我们的从规范上理解出代码可能的表现是不太一致的。并且,这种不一致,导致我们在学习 Java 内存模型(JMM,Java Memory Model),理解 Java 内存模型设计的时候,如果想通过实际的代码去试,结果是与自己本来可能正确的理解被带偏了,导致误解。

我本人也是不断地尝试理解 Java 内存模型,重读 JLS 以及各路大神的分析。这个系列,会梳理我个人在阅读这些规范以及分析还有通过 jcstress 做的一些实验而得出的一些理解,希望对于大家对 Java 9 之后的 Java 内存模型以及 API 抽象的理解有所帮助。但是,还是强调一点,内存模型的设计,出发点是让大家可以不用关心底层而抽象出来的一些设计,涉及的东西很多,我的水平有限,可能理解的也不到位,我会尽量把每一个论点的论据以及参考都摆出来,请大家不要完全相信这里的所有观点,如果有任何异议欢迎带着具体的实例反驳并留言


3. 原子性访问


原子性访问,对于一个字段的写入与读取,这个操作本身是原子的不可分割的。可能大家不经常关注的一点是根据 JLS 第 17 章中的说明,下面这两个操作,并不是原子性访问的:


image.png


因为大家当前的系统通常都是 64 位的,得益于此,这两个操作大多是原子性的了。但是其实根据 Java 的规范,这两个并不是原子性的,在 32 位的系统上就保证不了原子性。我这里直接引用 JLS 第 17 章的一段原话:

For the purposes of the Java programming language memory model, a single write to a non-volatile long or double value is treated as two separate writes: one to each 32-bit half. This can result in a situation where a thread sees the first 32 bits of a 64-bit value from one write, and the second 32 bits from another write.Writes and reads of volatile long and double values are always atomic.

翻译过来,简单来说非 volatile 的 long 或者 double 可能会按照两次单独的 32 位写更新,所以是非原子性的。volatile 的 long 或者 double 读取和写入都是原子性的。

为了说明我们这里的原子性,我引用一个 jcstress 中的一个例子:


image.png


我们使用 Java 8 32bit (Java 9 之后就不再支持 32 位的机器了)的 JVM 运行这里的代码,结果是:


image.png


可以看到,结果不止 -1 和 0 这种我们代码中的指定的值,还有一些中间结果。


4. 字分裂(word tearing)


字分裂(word tearing)即你更新一个字段,数组中的一个元素,会影响到另一个字段,数组中的另一个元素的值。例如处理器没有提供写单个 byte 的功能,假设最小维度是 int,在这样的处理器上更新 byte 数组,若只是简单地读取 byte 所在的整个 int,更新对应的 byte,然后将整个 int 再写回,这种做法是有问题的。Java 中没有字分裂现象,字段之间以及数组元素之间是独立的,更新一个字段或元素不能影响任何其它字段或元素的读取与更新。


为了说明什么是字分裂,举一个不太恰当的例子,即线程不安全的 BitSet。BitSet 的抽象是比特位集合(一个一个 0,1 这样,可以理解为一个 boolean 集合),底层实现是一个 long 数组,一个 long 保存 64 个比特位,每次更新都是读取这个 long 然后通过位运算更新对应的比特位,再更新回去。接口层面是一位一位更新,但是底层却是按照 long 的维度更新的(因为是底层 long 数组),很明显,如果没有同步锁,并发访问就会并发安全问题从而造成字分裂的问题:


image.png


结果是:


image.png


这里用了一个不太恰当的例子来说明什么是字分裂,Java 中是可以保证没有字分裂的,对应上面的 BitSet 的例子就是我们尝试更新一个 boolean 数组,这样结果就只会是 true true:


image.png


这个结果只会是 true true

接下来,我们将进入一个比较痛苦的章节了,内存屏障,不过大家也不用太担心,从我个人的经验来看,内存屏障很难理解的原因是因为网上基本上不会从 Java 已经为你屏蔽的底层细节去给你讲,直接理解会很难说服自己,于是就会猜想一些东西然后造成误解,所以本文不会上来丢给你 Doug Lea 抽象的并一直沿用至今的 Java 四种内存屏障(就是 LoadLoad,StoreStore,LoadStore 和 StoreLoad 这四个,其实通过后面的分析也能看出来,这四个内存屏障的设计对于现在的 CPU 来说已经有些过时了,现在用的更多的是 acquire, release 以及 fence)希望能通过笔者看的一些关于底层细节的文章论文中提取出便于大家理解的东西供大家参考,更好地更容易的理解内存屏障。

相关文章
|
1月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
31 0
|
7天前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
55 9
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
14天前
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
Java 并发编程——volatile 关键字解析
|
12天前
|
Java 数据库连接 Spring
反射-----浅解析(Java)
在java中,我们可以通过反射机制,知道任何一个类的成员变量(成员属性)和成员方法,也可以堆任何一个对象,调用这个对象的任何属性和方法,更进一步我们还可以修改部分信息和。
|
1月前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
1月前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
1月前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
1月前
|
Java 数据库连接 开发者
Java中的异常处理机制:深入解析与最佳实践####
本文旨在为Java开发者提供一份关于异常处理机制的全面指南,从基础概念到高级技巧,涵盖try-catch结构、自定义异常、异常链分析以及最佳实践策略。不同于传统的摘要概述,本文将以一个实际项目案例为线索,逐步揭示如何高效地管理运行时错误,提升代码的健壮性和可维护性。通过对比常见误区与优化方案,读者将获得编写更加健壮Java应用程序的实用知识。 --- ####
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
88 2
|
13天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析

热门文章

最新文章