通过 JFR 与日志深入探索 JVM - TLAB 原理详解(上)

简介: 通过 JFR 与日志深入探索 JVM - TLAB 原理详解(上)
全系列目录: 通过 JFR 与日志深入探索 JVM - 总览篇


什么是 TLAB?


TLAB(Thread Local Allocation Buffer)线程本地分配缓存区,这是一个线程专用的内存分配区域。既然是一个内存分配区域,我们就先要搞清楚 Java 内存大概是如何分配的。


我们一般认为 Java 中 new 的对象都是在堆上分配,这个说法不够准确,应该是大部分对象在堆上的 TLAB分配,还有一部分在 栈上分配 或者是 堆上直接分配,可能 Eden 区也可能年老代。同时,对于一些的 GC 算法,还可能直接在老年代上面分配,例如 G1 GC 中的 humongous allocations(大对象分配),就是对象在超过 Region 一半大小的时候,直接在老年代的连续空间分配。


这里,我们先只关心 TLAB 分配。 对于单线程应用,每次分配内存,会记录上次分配对象内存地址末尾的指针,之后分配对象会从这个指针开始检索分配。这个机制叫做 bump-the-pointer (撞针)。 对于多线程应用来说,内存分配需要考虑线程安全。最直接的想法就是通过全局锁,但是这个性能会很差。为了优化这个性能,我们考虑可以每个线程分配一个线程本地私有的内存池,然后采用 bump-the-pointer 机制进行内存分配。这个线程本地私有的内存池,就是 TLAB。只有 TLAB 满了,再去申请内存的时候,需要扩充 TLAB 或者使用新的 TLAB,这时候才需要锁。这样大大减少了锁使用。


TLAB 相关 JVM 参数详解


我们先来浏览下 TLAB 相关的 JVM 参数以及其含义,在下一小节会深入源码分析原理以及设计这个参数是为何。

以下参数与默认值均来自于 OpenJDK 11


1. UseTLAB

说明:是否启用 TLAB,默认是启用的。

默认:true

举例:如果想关闭:-XX:-UseTLAB


2. ResizeTLAB

说明:TLAB 是否是自适应可变的,默认为是。

默认:true

举例:如果想关闭:-XX:-ResizeTLAB


3. TLABSize

说明:初始 TLAB 大小。单位是字节

默认:0, 0 就是不主动设置 TLAB 初始大小,而是通过 JVM 自己计算每一个线程的初始大小

举例-XX:TLABSize=65536


4. MinTLABSize

说明:最小 TLAB 大小。单位是字节

默认:2048

举例-XX:TLABSize=4096


5. TLABWasteTargetPercent

说明:TLAB 的大小计算涉及到了 Eden 区的大小以及可以浪费的比率。TLAB 浪费占用 Eden 的百分比,这个参数的作用会在接下来的原理说明内详细说明

默认:1

举例-XX:TLABWasteTargetPercent=10


6. TLABAllocationWeight

说明: TLAB 大小计算和线程数量有关,但是线程是动态创建销毁的。所以需要基于历史线程个数推测接下来的线程个数来计算 TLAB 大小。一般 JVM 内像这种预测函数都采用了 EMA (Exponential Moving Average 指数平均数)算法进行预测,会在接下来的原理说明内详细说明。这个参数代表权重,权重越高,最近的数据占比影响越大。

默认:35

举例-XX:TLABAllocationWeight=70


7. TLABRefillWasteFraction

说明: 在一次 TLAB 再填充(refill)发生的时候,最大的 TLAB 浪费。至于什么是再填充(refill),什么是 TLAB 浪费,会在接下来的原理说明内详细说明

默认:64

举例-XX:TLABRefillWasteFraction=32


8. TLABWasteIncrement

说明: TLAB 缓慢分配时允许的 TLAB 浪费增量,什么是 TLAB 浪费,什么是 TLAB 缓慢分配,会在接下来的原理说明内详细说明。单位不是字节,而是MarkWord个数,也就是 Java 堆的内存最小单元

默认:4

举例-XX:TLABWasteIncrement=4


9. ZeroTLAB

说明: 是否将新创建的 TLAB 内的对象所有字段归零

默认:false

举例-XX:+ZeroTLAB


TLAB 生命周期与原理详解


TLAB 是从堆上 Eden 区的分配的一块线程本地私有内存。线程初始化的时候,如果 JVM 启用了 TLAB(默认是启用的, 可以通过 -XX:-UseTLAB 关闭),则会创建并初始化 TLAB。同时,在 GC 扫描对象发生之后,线程第一次尝试分配对象的时候,也会创建并初始化 TLAB 。在 TLAB 已经满了或者接近于满了的时候,TLAB 可能会被释放回 Eden。GC 扫描对象发生时,TLAB 会被释放回 Eden。TLAB 的生命周期期望只存在于一个 GC 扫描周期内。在 JVM 中,一个 GC 扫描周期,就是一个epoch。那么,可以知道,TLAB 内分配内存一定是线性分配的。


TLAB 的最小大小:通过MinTLABSize指定

TLAB 的最大大小:不同的 GC 中不同,G1 GC 中为大对象(humongous object)大小,也就是 G1 region 大小的一半。因为开头提到过,在 G1 GC 中,大对象不能在 TLAB 分配,而是老年代。ZGC 中为页大小的 8 分之一,类似的在大部分情况下 Shenandoah GC 也是每个 Region 大小的 8 分之一。他们都是期望至少有 8 分之 7 的区域是不用退回的减少选择 Cset 的时候的扫描复杂度。对于其他的 GC,则是 int 数组的最大大小,这个和为了填充 dummy object 表示 TLAB 的空区域有关。


image.png



为何要填充 dummy object

由于 TLAB 仅线程内知道哪些被分配了,在 GC 扫描发生时返回 Eden 区,如果不填充的话,外部并不知道哪一部分被使用哪一部分没有,需要做额外的检查,如果填充已经确认会被回收的对象,也就是 dummy object, GC 会直接标记之后跳过这块内存,增加扫描效率。反正这块内存已经属于 TLAB,其他线程在下次扫描结束前是无法使用的。这个 dummy object 就是 int 数组。为了一定能有填充 dummy object 的空间,一般 TLAB 大小都会预留一个 dummy object 的 header 的空间,也是一个 int[] 的 header,所以 TLAB 的大小不能超过int 数组的最大大小,否则无法用 dummy object 填满未使用的空间。


TLAB 的大小: 如果指定了TLABSize,就用这个大小作为初始大小。如果没有指定,则按照如下的公式进行计算: Eden 区大小 / (当前 epcoh 内会分配对象期望线程个数 * 每个 epoch 内每个线程 refill 次数配置)

当前 epcoh 内会分配对象期望线程个数,也就是会创建并初始化 TLAB 的线程个数,这个从之前提到的 EMA (Exponential Moving Average 指数平均数)算法采集预测而来。算法是:


采样次数小于等于 100 时,每次采样:
1. 次数权重 = 100 / 次数
2. 计算权重 = 次数权重 与 TLABAllocationWeight 中大的那个
3. 新的平均值 = (100% - 计算权重%) * 之前的平均值 + 计算权重% * 当前采样值
采样次数大于 100 时,每次采样:
新的平均值 = (100% - TLABAllocationWeight %) * 之前的平均值 + TLABAllocationWeight % * 当前采样值

可以看出 TLABAllocationWeight 越大,则最近的线程数量对于这个下个 epcoh 内会分配对象期望线程个数影响越大。

每个 epoch 内期望 refill 次数就是在每个 GC 扫描周期内,refill 的次数。那么什么是 refill 呢?


在 TLAB 内存充足的时候分配对象就是快分配,否则在 TLAB 内存不足的时候分配对象就是慢分配慢分配可能会发生两种处理:

1.线程获取新的 TLAB。老的 TLAB 回归 Eden,之后线程获取新的 TLAB 分配对象。


微信图片_20220624205449.jpg


2.对象在 TLAB 外分配,也就 Eden 区。


微信图片_20220624205513.jpg


这两种处理主要由TLAB最大浪费空间决定,这是一个动态值初始TLAB最大浪费空间 = TLAB 的大小 / TLABRefillWasteFraction。根据前面提到的这个 JVM 参数,默认为TLAB 的大小的 64 分之一。之后,伴随着每次慢分配,这个TLAB最大浪费空间会每次递增 TLABWasteIncrement 大小的空间。如果当前 TLAB 的剩余容量大于TLAB最大浪费空间,就不在当前TLAB分配,直接在 Eden 区进行分配。如果剩余容量小于TLAB最大浪费空间,就丢弃当前 TLAB 回归 Eden,线程获取新的 TLAB 分配对象。refill 指的就是这种线程获取新的 TLAB 分配对象的行为。

那么,也就好理解为何要尽量满足 TLAB 的大小 = Eden 区大小 / (下个 epcoh 内会分配对象期望线程个数 * 每个 epoch 内每个线程 refill 次数配置)了。尽量让所有对象在 TLAB 内分配,也就是 TLAB 可能要占满 Eden。在下次 GC 扫描前,refill 回 Eden 的内存别的线程是不能用的,因为剩余空间已经填满了 dummy object。所以所有线程使用内存大小就是 下个 epcoh 内会分配对象期望线程个数 * 每个 epoch 内每个线程 refill 次数配置,对象一般都在 Eden 区由某个线程分配,也就所有线程使用内存大小就最好是整个 Eden。但是这种情况太过于理想,总会有内存被填充了 dummy object而造成了浪费,因为 GC 扫描随时可能发生。假设平均下来,GC 扫描的时候,每个线程当前的 TLAB 都有一半的内存被浪费,这个每个线程使用内存的浪费的百分比率(也就是 TLABWasteTargetPercent),也就是等于(注意,仅最新的那个 TLAB 有浪费,之前 refill 退回的假设是没有浪费的):

1/2 * (每个 epoch 内每个线程期望 refill 次数) * 100

那么每个 epoch 内每个线程 refill 次数配置就等于 50 / TLABWasteTargetPercent, 默认也就是 50 次。

TLABResize 设置为 true 的时候,在每个 epoch 当线程需要分配对象的时候, TLAB 大小都会被重新计算,并用这个最新的大小去从 Eden 申请内存。如果没有对象分配则不重新计算,也不申请(废话~~~)。主要是为了能让线程 TLAB 的 refill 次数 接近于 每个 epoch 内每个线程 refill 次数配置。这样就能让浪费比例接近于用户配置的 TLABWasteTargetPercent.这个大小重新计算的公式为: TLAB 最新大小 * EMA refill 次数 / 每个 epoch 内每个线程 refill 次数配置


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
存储 安全 算法
深入剖析JVM内存管理与对象创建原理
JVM内存管理,JVM运行时区域,直接内存,对象创建原理。
37 2
|
19天前
|
缓存 Java C#
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍(一)
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍
57 0
|
2天前
|
存储 XML 监控
JVM工作原理与实战(三):字节码文件的组成
JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供性能监控工具,以及确保程序的跨平台运行。本文主要介绍了字节码文件的基础信息、常量池、方法、字段、属性等内容。
|
1月前
|
存储 SQL 关系型数据库
[MySQL]事务原理之redo log,undo log
[MySQL]事务原理之redo log,undo log
|
1月前
|
算法 Oracle Java
【JVM】了解JVM中动态判断对象年龄的原理
【JVM】了解JVM中动态判断对象年龄的原理
23 0
|
2月前
|
算法 Java
深入理解JVM - 解读GC日志
深入理解JVM - 解读GC日志
50 0
|
3月前
|
Java Spring
Spring5深入浅出篇:Spring工厂简单原理以及日志应用
Spring5深入浅出篇:Spring工厂简单原理以及日志应用
|
3月前
|
运维 监控 Java
【深入浅出JVM原理及调优】「搭建理论知识框架」全方位带你深度剖析Java线程转储分析的开发指南
学习JVM需要一定的编程经验和计算机基础知识,适用于从事Java开发、系统架构设计、性能优化、研究学习等领域的专业人士和技术爱好者。
54 5
【深入浅出JVM原理及调优】「搭建理论知识框架」全方位带你深度剖析Java线程转储分析的开发指南
|
3月前
|
存储 缓存 Java
【深入浅出JVM原理及调优】「搭建理论知识框架」全方位带你认识和了解JMM并发模型的基本原理
每位Java开发者都了解到Java字节码是在Java运行时环境(JRE)上执行的。JRE包含了最为关键的组成部分:Java虚拟机(JVM),它负责分析和执行Java字节码。通常情况下,大多数Java开发者无需深入了解虚拟机的内部运行原理。即使对虚拟机的运行机制不甚了解,也不会对开发工作产生太多影响。然而,对JVM有一定了解的话,将更有助于深入理解Java语言,并解决一些看似困难的问题。
60 4
【深入浅出JVM原理及调优】「搭建理论知识框架」全方位带你认识和了解JMM并发模型的基本原理
|
3月前
|
监控 Shell 测试技术
Appium日志分析总结Appium工作原理
Appium日志分析总结Appium工作原理
31 0